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ISAAC D MONTOYA

BACKGROUND: To review the reliability and validity lit-
erature and develop an understanding of these concepts as
applied to managed care studies.

RESULTS: Reliability is a test of how well an instrument
measures the same input at varying times and under varying
conditions. Validity is a test of how accurately an instru-
ment measures what one believes is being measured.

METHODS: A review of reliability and validity instruc-
tional material was conducted.

CONCLUSIONS: Studies of managed care practices and
programs abound. However, many of these studies utilize
measurement instruments that were developed for other pur-
poses or for a population other than the one being sampled.
In other cases, instruments have been developed without any
testing of the instrument’s performance. The lack of reliabil-
ity and validity information may limit the value of these stud-
ies. This is particularly true when data are collected for one
purpose and used for another. The usefulness of certain stud-
ies without reliability and validity measures is questionable,
especially in cases where the literature contradicts itself.
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LEARNING OBJECTIVES
After completing this article, the reader will be able to:
1. define measurement, describing sources and types of mea-

surement errors.
2. define reliability and validity.
3. cite numerical ranges for reliability and validity.
4. describe how reliability and validity are each calculated.
5. explain how reliability and validity relate to measurement

error(s).
6. apply reliability and validity concepts to the evaluation of

managed care and similar studies.
7. describe the relationship between a theoretical concept

and its operationalization.
8. list and define the types of validity that apply to evalua-

tion of managed care and similar studies, including
method(s) of measurement.

The introduction of the managed care paradigm has had a
greater impact on healthcare delivery than any other single
development. All aspects of healthcare have been substantially
influenced by managed care. This paradigm has mandated
that practitioners of both physical and behavioral medicine
re-examine their clinical practices and protocols, focusing on
efficiency and quality measures in an effort to control costs.
The value of these measurements has been inconsistent due
to the complex nature of measuring healthcare outcomes. The
emphasis of the managed care paradigm is on efficiency with-
out the sacrifice of quality. To accurately assess this, outcome
measures must be employed to evaluate clinical improvements;
such measures have been the subject of countless studies at-
tempting to evaluate them. Some of these studies are complex
and credible scientific research efforts, while others are sim-
pler attempts merely to understand a particular intervention.
The purpose of this paper is to examine those tools essential
in high quality studies of managed care that measure actual
changes resulting from this new paradigm.
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It is often the case that scientists are interested in measuring
concepts that are not directly observable. Concepts such as
‘kidney failure’, ‘cardiac disease’, ‘self-esteem’, or ‘depression’
must be estimated using such variables as clinical laboratory
measurements or responses to a questionnaire. The process
by which a theoretical concept, such as ‘self-esteem’, is mea-
sured is called the ‘operationalization’ of the concept. When
a concept is operationalized, it is represented by an observ-
able variable as illustrated in Figure 1.

As the theoretical concept and the observable variable are
distinct from each other, the question always arises as to the
adequacy of the observable variable as a direct and meaning-
ful measure of the concept. Obviously, the utility of the ob-
servable variable for research depends on how well the vari-
able captures the meaning of the concept. Reliability and
validity are the two standard criteria by which the adequacy
of the measurement can be assessed.

A note on terminology—when an observable variable is being
used to estimate the value of an unobservable theoretical con-
cept, the process is referred to as ‘measurement’. Thus, a ques-
tionnaire item such as “your feelings are easily hurt” is being
used to measure the theoretical concept of self-esteem. When
an attempt to assess the quality or adequacy of the process of
measurement is made, we say that we are making an assessment
of the measurement. When we ask how well the item “your
feelings are easily hurt” measures self-esteem, we are assessing
the validity of the item. When we ask how consistently respon-
dents answer the item, we are assessing the reliability of the
item. The meaning of reliability and validity are considered next.

RELIABILITY
Reliability deals with the consistency of a measure.1 Reliabil-
ity assesses the extent to which an experiment, test, or any
measurement yields the same results on repeated traits.2 Con-
sistency of an observable variable, as shown in Figure 2, can
come from the validity of the variable as a measure of the
target theoretical concept (t). Consistency can also come from
other sources to the extent to which the observable variable
measures some other concept, usually not intended (b in the
figure). In Figure 2, e summarizes all the (random) sources
of nonreliability.

VALIDITY
Validity is the extent to which an observable variable suc-
cessfully measures (estimates the value of ) a given theoreti-
cal concept.1,2 Thus validity is always described in terms of
an observable variable and a theoretical concept. In Figure
2, the validity of the item as a measure of self-esteem is given
by the arrow t. If we can estimate the value of t, this estimate
will be the assessment of the validity of the item as a mea-
sure of the concept. In the figure, b and e summarize all the
sources of nonvalidity.

Thus validity is an assessment of how well one has done the
measurement job from the perspective of theory. Validity is
the purpose of measurement. Validity is, as we shall see, very
difficult to assess because the very assessment process requires
judgments about theory. Reliability is a more limited assess-
ment of how well one has done the measurement job. How-
ever, it is easier to assess because the assessment can be car-
ried out empirically without reference to the theory.

ASSESSMENT OF RELIABILITY
Classical Test Theory or True Score Theory (TST) is a theory
about measurement.3-6 According to TST, any measurement
has two components: the true value of the theoretical con-
cept, and an error component. Thus, any measure can be
represented by:

(1) x = X + error

where x = observed score (value of the observable variable),
X = true score (value of the theoretical variable), and error =
the deviation of the value of the observed variable from the
value of the theoretical concept.

Two types of errors exist; random error and systematic error.
Random error is caused by any factor that randomly affects
the measurement of a variable across the entire sample. For

REPORTS AND REVIEWS

Figure 1. A concept and its measurement
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example, a person’s mood at the time of
completing a health questionnaire is a
source of random error. Some individu-
als may be in a ‘bad mood’ as they are
taking the test while others may be in a
‘good mood’. Random errors do not
have any systematic effects on the
sample. They just push observed scores
upward or downward randomly. Be-
cause there will be as many positives as
negative errors, the expected mean of
random errors will be zero. Random
errors add variance to the data, but do
not affect the average performance for
the group. Because of this, random er-
rors are sometimes called noise. Figure
3 illustrates the effect of random errors
in the measurement.7 In Figure 2, ran-
dom error is indicated by the arrow e.

Systematic errors, on the other hand,
are caused by factors that systematically
affect the measurement of the variable
across the entire sample. Unlike ran-
dom errors, systematic errors can be
consistently either positive or negative.
Systematic errors are sometimes called
bias in measurement. For example, if
there is a loud noise outside the room
where the patients are completing

questionnaires, the noise will affect the
responses for all patients, depending on
the susceptibility of each patient to
noise. Another example is the reading
level of each patient: if the reading level
of the measuring instrument is above
the reading level of some patients, then
the scores of those patients will be bi-
ased (usually lowered). Figure 4 illus-
trates the effect of systematic error in
the measurement of a concept.7 In Fig-
ure 2, bias (systematic error) is indi-
cated by the systematic error term b.

Because the error term in equation 1
is composed of two parts, equation (1)
can be rewritten as:

(2) x = X + Z + ε,

where x and X are as described above,
Z is the unstandardized systematic er-
ror and ε is the unstandardized ran-
dom error. In this equation, X + Z, the
combined score, represents the con-
stant part of the measure x, part of
which represents the intended concept
X and part of which represents other
sources of stability (bias). This stable
part can be represented as W.

REPORTS AND REVIEWS

(3) x = W + ε

When one is concerned about reliabil-
ity, this equation is a useful transfor-
mation. When one is concerned about
validity, this transformation is inappro-
priate because it confuses X, the sta-
bility from what one wants to measure
with Z, the stability from unintended
effects.

Another way to write equation (2) is
with standardized variables. This shifts
the focus from the descriptive view of
x as composed of multiple scores. In-
stead it conceptualizes x in terms of the
causes of its observed value. When the
variables x, X, Z, and e are standard-
ized, the equation becomes:

(4) x = tX + bZ + eε = rW + eε,

where t is the validity of concept X, b
is the validity of all other systematic
sources of error (concepts) not in-
tended, r is the effect of the composite
concept W, and e is the effect of ran-
dom error.

The TST assumptions can be pre-
sented more formally as:
a) E(ε) = 0;
b) ρxz = 0;
c) ρxε = 0 and ρwε = 0; and
d) ρε

1
ε

2
 = 0.

Assumption (a) implies that the ex-
pected mean error score is zero. As-
sumption (b) states that the correlation
between the true score and the bias is
zero. Assumption (c) implies that the
correlation between the error and the
true score is zero, as well as the corre-
lation between the error and the com-
bined score. Assumption (d) states that
the correlation between errors on dif-
ferent measurements is zero.

Figure 2. Reliability and validity
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Reliability, however, is not meant to capture the consistency
of a measure for an individual, but rather the consistency of a
measure across individuals. Thus,

(5a) Var(x) = Var(rW + eε) = r2 + e2,

in terms of effects, and

(5b) Var (x) = Var(W + ε)=Var(W)=Var(ε),

in terms of scores,

when X, Z, and ε are standardized and given the assump-
tions (a) through (c) above. Similar results to (5a) are given
in Heise, and to (5b) in Pindyck and Rubinfeld.4,8

Equation (5a) shows the variance of x, a standardized vari-
able, and r represents the stable, consistent factors determin-
ing x; the reliability (consistency) of x is given by the pro-
portion of variance in x that is due to W:

(6) ρ
x
 = r2 ÷ r2= e2 = Var(W) ÷ Var(W) + Var(ε)

Reliability then is a ratio or fraction of the combined score
variance to observed variance. In other words, reliability may
be defined as the proportion of consistency in the measure.
Reliability thus varies between 1 and 0. Because x = rW +
eå, by equation 5, equation 6 can be re-written as

(7) ρ
x
 =r2 ÷ r2 + e2 = Var(W) ÷ Var(W) +  Var(ε)

If a measure is perfectly reliable, then there is no random
error in measurement. That is, all we observed is the com-

bined score (that is, true score and bias or systemic error).
Thus, for a perfectly reliable measure, ε will be zero, and ε

x
 =

1. On the other hand, if we have a perfectly unreliable mea-
surement, there is no true score (t and b are zero). The mea-
surement is entirely error. In this case, the above equation is
reduced to:

(8) ρ = 0 ÷ e2 = 0 ÷ VAR(ε) = 0

Thus, reliability will always vary between 1 and 0. The value
of the reliability assessment tells us the proportion of vari-
ability in the measure attributable to the combined score.
For example, a reliability of 0.5 tells us that about half of the
variance of the observed score is attributable to the com-
bined score and half is attributable to random error. A reli-
ability of 0.8 means a variability is about 80% combined
score and 20% random error and so on.

We have seen that the term reliability means ‘repeatability’
or ‘consistency’. That is, a measure is considered reliable to
the extent that it gives the same result repeatedly (assuming
that what we are measuring isn’t changing).

In the following section, X is represented by x, t is repre-
sented by W, and e is represented by epsilon (ε). Since reli-
ability is based on consistency, the assessment of reliability is
based on the comparison of two or more measurements. Such
measurements are described as “parallel measurements.” An
assessment of a measure’s reliability can be obtained by cor-
relating parallel measurements. Two measurements are said
to be parallel if they have identical composite scores and
equal variances. Thus x and x’ will be parallel if:

(9) x = W + ε

REPORTS AND REVIEWS

Figure 3. Random error

Figure 4. Bias (systematic error)
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and

(10) x’ =W + ε’

where Var(ε) = Var(ε’).

Thus, parallel measurements are dis-
tinct from one another, but similar and
comparable in many ways. Parallel
measurements have the same value of
the theoretical composite variable W,
and the differences between parallel
measurements are the result of purely
random errors. The correlation be-
tween parallel measurements can be ex-
pressed as:

(11) ρ
xx’

 = σ
xx’

 ÷ σ
x
σ

x’

since X = t + e, then

(12) ρ
xx’

 = σ
(t+e)

σ
(t+e’)

 ÷ σ
x
σ

x’

Distributing terms,

(13) ρ
xx’

 = σ
t
2 + σ

te
 + σ

et
 + σ

ee’
 ÷ σ

x
σ

x’

Because the errors are uncorrelated
with composite scores (assumption c)
and uncorrelated with each other (as-
sumption d), and because the variance,
hence the standard deviations, of par-

allel measures are assumed to be equal,
equation 13 reduces to:

(14) ρ
xx’

 = σ
t
2 ÷ σ

x
2

That is, the correlation between par-
allel measures is equal to the compos-
ite score variance divided by the ob-
served variance. Rearranging terms,
the unobservable composite score
variance can be expressed as:

(15) σ
t
2 = σ

x
2ρ

xx’

From equation 6 where reliability was
computationally defined, and substi-
tuting, we have:

(16) ρx = σt
2 ÷ σx

2 = σx
2ρxx’ ÷ σx

2 = ρxx’

Thus, an assessment of reliability can
be obtained by estimating the correla-
tion between parallel measures. For ex-
ample, if we have two or more items
or a single item measured at two dif-
ferent times we can assess the reliabil-
ity of the measurement.

Returning to the effects model of equa-
tions (4), (5a), and (6), reliability is
equivalent to the following:

(17) ρ
xx’

 = r2 = t2 + b2

REPORTS AND REVIEWS

Figure 5. Assessing test-retest reliability

METHODS FOR ASSESSING RE-
LIABILITY
The next question is how one can find
parallel measures so that reliability can
be assessed. There are four different
methods of obtaining parallel mea-
sures: test-retest, alternative forms,
split-half, and internal consistency
methods2.   Each of these methods is
explained below.

Test-retest method
The test-retest method of establishing
reliability entails administering the
same instrument twice to the same
group of individuals under the same
conditions after some time interval has
elapsed. The correlation coefficient
between the first test and the retest is
called coefficient of stability. As the name
indicates, it gives an assessment of how
stable the results are over a given time
period. The shorter the period between
tests, the higher the coefficient of sta-
bility. However, if the time interval
between test and retest is very short,
the participant is likely to remember
how he/she answered the first time.
This will give a misleadingly high co-
efficient of stability.

An example of an assessment of test-
retest reliability is given in Figure 5. In
this figure we see how the correlation
between the item at two points in time
is equal to r2. This method assumes that
the value of the theoretical concept
does not change from time 1 to time
2. It assumes that the item reflects the
theoretical concepts (r) at each time
period equally well and that the ran-
dom error effect is the same at each
time period. It assumes that the sum
of the effects of X and Z remains con-
stant from time 1 to time 2 (there are
not any different stable effects at the
two time periods). Because the same
item (or the same scale or the same
instrument) is being administered at
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two times with the assumption that the
underlying theoretical concept has not
changed, time stability is taken as the
causal effect of the theoretical concept
on the observable variable.

Alternative-form method
The alternative or equivalent form
method entails administering the re-
search instrument to the same group
of individuals at two different times
using different, but equivalent
forms.6,10,11 The reliability coefficient
is called the coefficient of equivalence.
A high coefficient of equivalence indi-
cates that both research instruments are
assessing similar contents of the instru-
ment. This method is illustrated in Fig-
ure 6, where two items are taken as
equivalent measures of the self-esteem
theoretical concept. This method as-
sumes that each item (or each scale or
each instrument) involves exactly the
same causal effect from the theoretical
variable and takes the consistency of
responses as an assessment of the causal
effect of the theoretical concept on
each of the alternative forms of the
item (scale, instrument).

Split-half method
The split-half method is the most fre-

quent method used to assess reliabil-
ity.2,6,11 Under this method, the research
instrument is administered to a group
of respondents and then the items are
split in half, for example odds and evens,
for purposes of scoring. The results of
the two halves are then compared. The
association between the two halves is
called the coefficient of internal consis-
tency and measures the degree to which
the two halves are equivalent. In Figure
6, this process is represented as the com-
parison of one item with another (al-
though the comparison can be of sev-
eral items with several other items). The
split-half method offers a clear advan-
tage in terms of time and resources over
the test-retest and the alternative form
methods in that it does not require the
test to be administered twice to the same
group of respondents.

The correlation between the two halves
of the test, however, is a measure of the
reliability for each half of the test rather
than the total test as correlations on
fewer items are usually less than on more
items. Thus, a statistical correction
should be made so that the researcher
can get an assessment for the whole test,
not just for the odd or even questions
of the test.2,6,11 This procedure is known

REPORTS AND REVIEWS

as the Spearman-Brown prophecy for-
mula. If the total test is twice as long as
each half, the Spearman-Brown formula
will be given by:

(18) ρxx’’ = 2ρxx’ ÷ 1 + ρxx’

where ρ
xx’’

 is the reliability coefficient
for the entire test and ρxx’ is the split-
half correlation. For example, if the
split-half correlation is 0.75, the reli-
ability for the whole test is (2 * 0.75)/
(1 + 0.75) = 0.857.

One disadvantage of the split-method,
however, is that the reliability obtained
may depend on the number of ways
the instrument is subdivided. For ex-
ample, it is possible that the correla-
tion between the first and second
halves of the test may be different than
the correlation between odd and even
items in the test. Thus using the split-
half method, it is possible that reliabil-
ity may differ even though the same
items are administered to the same in-
dividuals at the same time.

Internal consistency method
As seen above, even the split-half
method is not without its shortcomings.
However, there are other methods of es-
timating reliability that do not require
either the splitting of the items nor the
repeating of items. The internal consis-
tency method is one such method. Un-
der the internal consistency method, a
single test is administered. Within the
test, questions are grouped together that
measure the same concept and are then
used to assess reliability of that portion
of the test.

Another and more common way of
computing correlation values among
the questions in an instrument is the
Cronbach’s alpha. The Cronbach alpha
splits all the questions on the instru-
ment every possible way and computes

Figure 6. Assessing alternate forms, split-half, and internal consistency
reliability
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correlation values for all of them (us-
ing a statistical software program such
as SPSS or SAS). At the end, the soft-
ware program will generate a number
for Cronbach alpha and just like a cor-
relation coefficient, the closer it is to
one, the higher the reliability assess-
ment of the instrument. The
Cronbach’s alpha can be defined as:

(20) α = [N ÷ (N – 1)][1 – (Σσ2Y
i
 ÷ σ

x
2)]

where N = the number of items, Σσ2Y
i

is the sum of the items variances, and
σ

x
2 is the total variance. Alternatively,

the Cronbach alpha may be defined as:

(21) α = Nρ
_
 ÷ [1 + ρ

_
(N – 1)]

where N is the number of items, and ρ
_

is the mean of the inter-item correlation.

In both cases the alpha coefficient can
be interpreted as the expected correla-
tion of one test with an alternative form
containing the same number of items.

If the responses are dichotomies (1 or
0), however, one can use the Kuder-
Richardson formula given by:;

(22) KR20 = N ÷ N-1[1 - Σρ(1 – ρ) ÷ σx
2]

where N is the number of dichotomous
items, p is the proportion responding
‘yes’ to the item, ρ

x
2 is the variance of

the total test. KR2O has the same in-
terpretation of the regular alpha.

RELIABILITY SUMMARY
Reliability is one important perspec-
tive from which to assess the
operationalization of a concept. How-
ever, because all measurement involves
uncertainty, not only because of ran-
dom error, but also because of the in-
volvement of unobservable theoretical
concepts, reliability cannot be assessed
with absolute accuracy. It must be es-
timated from fallible data. There are
four methods to assess reliability: test-
retest, alternative form, split-half, and
internal consistency methods. As dis-
cussed above, both the test-retest and
the split-half methods have shortcom-
ing as estimators of reliability. The
main shortcoming of the test-retest
method is that experience of the first
testing can influence the responses in
the second testing. The shortcomings
of the split-half method, on the other

REPORTS AND REVIEWS

hand, are that correlation between
halves will differ depending on how the
total number of items in the instru-
ment was divided. The internal con-
sistency method is easy to use because
it requires only a single test adminis-
tration. Regardless of the method used
to assess reliability, researchers agree
that reliability should not be below
0.80.2 Furthermore, it is not only im-
portant to achieve a high reliability
level, but also it is important to report
how reliability was assessed.

ASSESSMENT OF VALIDITY
The second tool in evaluating the opera-
tionalization of a concept is validity.
Validity may be defined as the extent
to which any measuring instrument
measures what it is intended to mea-
sure.2 There are three common types
of validity common to the social sci-
ences: content related, criterion-re-
lated, and construct validity.2,6,10,11

Each of them is explained below.

Content validity
Measuring how well the operation-
alization of the concept compares to the
relevant content domain for the con-
cept assesses content validity. Thus, it is
mostly applicable to concepts measured
by multiple items. Content validity is
assessed by the extent to which empiri-
cal measurement reflects the specific
domain of the theoretical concept. For
example, a test on mathematical ability
will not be content-valid if it only in-
cludes summation problems and ne-
glects subtraction, division, and others.
Thus, content validity deals with the
thoroughness or completeness of its
observable variables. Content validity
should answer the question of whether
the assessment strategy covers the ma-
jor dimensions or factors of the subject
matter under assessment.

Figure 7. Assessment of validity
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Content validity, unlike criterion and construct validity, is
not assessed statistically. The assessment of content validity
is a subjective judgment by the investigator, observer, or
groups of subject matter experts. Like all validity issues, con-
struct validity depends directly on theory. In this case, the
theory involves the definition of the theoretical variable. Con-
tent validity can be neither achieved nor assessed unless the
dimensions of the theoretical concept are clearly and explic-
itly defined. Content validity is directly and exclusively an
assessment of measurement theory.

Criterion-related validity
All assessments of validity involve theory. All assessments of
validity involve measurement theory (the effect of the theo-
retical concept on the observable variable) because it is the
assertion that the observable variable measures the target
concept that is being assessed. The most convincing assess-
ments of validity also involve substantive theory, in which
the target concept is tied to a related criterion concept.

In criterion-related validity one checks the performance of
the operationalization against some criterion. For this to be
done there must be an acknowledged and accepted theory
that the target variable is causally related to the criterion con-
cept. The assessment of criterion validity is depicted in Figure
7. We see, as in Figure 2, that a target concept is being mea-
sured (operationalized) by an observable variable. That is, the
values on the observable variable are seen to depend causally
on the theoretical variable. The observable variable is also seen
to be dependent on other theoretical concepts as well, con-
cepts that may be known or not known. The effect of the

target concept X on the observable variable x is measured by t.
In addition, the effect of the (unknown) other concept(s) Z
on the observable variable is b. The coefficient t is the validity
coefficient. The coefficient b is the bias in measurement.

The assessment of criterion validity involves computing a
correlation coefficient (r in Figure 7) between the measure
of the target concept and the measure of the criterion con-
cept. Mathematically, in all assessments of criterion validity,
it is assumed that Z, the unmeasured and unknown other
things that affect the observable variable are not associated
with the criterion concept, (i.e., d = 0), so that r = tac. In this
analysis, t, a, and c are standardized effects, so that their prod-
uct varies in absolute value between 0 and 1. If the

r = tac + bdc

criterion variable is considered to be a very good measure of
the criterion concept (c is approximately equal to 1) and if
the criterion theory is considered to be very strong (a is ap-
proximately equal to 1), then the correlation coefficient r is
approximately equal to the validity coefficient t.

If the theory describes an effect in the future (or in the past),
criterion validity is called “predictive validity”.5 If the theory
describes an effect in the same time period, criterion validity
is called “concurrent validity”. In predictive validity, for ex-
ample, a measurement of mathematical ability should be able
to predict how well a person will do in an engineering pro-
fession. A high correlation between the observable measure
of mathematical ability and the observable measure of engi-
neering professional success is taken as an assessment of how
well the mathematical ability observable variable measures
the mathematical ability theoretical concept.

A limitation of using criteria-related validity is that one often
lacks well established theory with which the measurement can
be evaluated. Another limitation is that the validity assess-
ment of the observable variable against its target concept is
also an evaluation of the theory that links the target concept
with the criterion concept and the measurement theory that
links the criterion concept and the criterion measure.

Construct validity
Construct validity assesses the extent to which the observ-
able variable measures the theoretical concept by comparing
the observed variable(s) with observed variable(s) of related
concepts. That is, construct validity is concerned with the
extent to which a particular measure relates to measures of

REPORTS AND REVIEWS

Figure 8. Assessment of construct validity:
convergence
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the same or different concepts. Con-
struct validity is assessed by conver-
gence and by discriminability.

Convergence
Convergence refers to direct attempts
to measure the same concept by mul-
tiple methods or in multiple settings.1

Convergence is depicted in Figure 8.
Kerlinger describes how convergence
is used to assess construct validity.1 In
Figure 8, a new observable variable (or
set of variables) is being assessed as a
measure of the target concept. This is
accomplished by computing the asso-
ciation between the new observable vari-
able and another observable variable
that is recognized as already providing
adequate measurement of the target
concept. For example, computing the
correlation of the new measure with the
Beck Depression Scale assesses a new
measure of depression. Thus the old
observable variable is used to assess the
adequacy of the new theoretical variable.
A variation on convergence is to com-
pare the observable variable with a mea-
sure of a closely related concept. It is, of

course, a theoretical issue as to the close-
ness of two concepts.

Discriminability
Discriminability refers to assessments of
an observable variable as a measure of a
target concept by comparing the observ-
able variable with observable variables
of unrelated concepts. Discriminabilty
is depicted in Figure 9.

The adequacy of the observable variable
as a measure of the target concept is as-
sessed by computing the association be-
tween the observable variable and another
observable variable measuring a concept
that is known or expected to have a very
different meaning than the target concept.
In this case a correlation near zero is con-
sidered to provide some evidence for the
adequacy of the observable variable.
Discriminability is always assessed along-
side of convergence. It is not considered
informative that an observable variable is
not associated with unrelated concepts
unless it is simultaneously shown that the
observable variable is associated with other
measures of the same concept or closely
related concepts.

REPORTS AND REVIEWS

Validity summary
As seen above, validity is more diffi-
cult to assess than reliability. Unlike
reliability, the assessment of validity is
more closely linked to the theory un-
derlining the concept. There are three
basic forms to assess validity. Content
validity focuses on content relevance
and coverage. It assesses whether the
items on the test are part of the
concept’s domain and whether the
items included represent the breadth
of the concept. Criterion-related valid-
ity assesses the measurement accord-
ing to the predictive or concurrent util-
ity of the measurement. That is, crite-
rion-related validity assesses the ad-
equacy of the measurement at the same
time that it assumes the predictive or
concurrent adequacy of the theory. Fi-
nally, construct validity compares the
observable variables of the target con-
cept to observable variables of the same
or different concepts.

RELIABILITY AND VALIDITY
SUMMARY
Validity and reliability are both impor-
tant tools to assess the operationalization
of a concept. A measure can be very re-
liable, but not valid. That is, a measure
can never be more valid than it is reli-
able. And of course a measure can be
neither reliable nor valid. The goal of
the managed care study should be to
have a measurement that is both reli-
able and valid.

CONCLUSION
The use of reliability and validity mea-
sures in studying managed care greatly
improves the scientific rigor and qual-
ity of research and evaluation studies.
Only when it has been established that
the instruments used in managed care
studies are consistent and actually mea-
sure the parameters of the variable that
they purport to measure, will it be pos-
sible to develop outcome measures that

Figure 9. Assessment of construct validity: discriminability
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are of value in improving managed care practices. It is by
means of such outcome measures that positive changes can
be identified and implemented in order to achieve the goals
of improved efficiency and effectiveness of, as well as access
to, the contemporary managed healthcare system.
Health services researchers seeking to accurately measure
outcomes should first consider creating an instrument that
will measure exactly what the researcher intends to measure
using language specific to the population that will be sampled.
This instrument should then be pilot tested and reliability
and validity measurements assessed. Only then should sam-
pling for the intended study begin. These measurements
should also be reported in all ensuing reports and publica-
tions. This will provide the reader with an increased com-
fort level and enhance the credibility of the study.

ACKNOWLEDGEMENTS
Support for this research was provided by grant DA
11414 to the Investigator from the National Institute
on Drug Abuse. The author would like to thank Travis E
Cal for his assistance in the preparation of this manuscript.

REPORTS AND REVIEWS

REFERENCES
1. American Psychological Association. Standards for educational and

psychological tests. Washington DC: American Psychological Asso-
ciation; 1974.

2. Cannines EG, Zeller RA. Reliability and validity assessment. Beverly
Hills CA: Sage; 1979.

3. Cronback FL, Gleser GL, Nanda H, Rajaratnan N. The depend-
ability of behavioral measurements: theory of generalizability for
scores and profiles. New York: Wiley; 1972.

4. Heise DR. Causal analysis. New York: Wiley; 1975.
5. Kerlinger FN. Foundations of behavioral research. 2nd ed. New York:

Holt, Rinehart and Winston; 1973.
6. Lord FM, Novick MR. Statistical theories of mental scores. Read-

ing, MA: Addison-Wesley; 1968.
7. Nunnally JC. Psychometric theory. New York: McGraw-Hill; 1978.
8. Pindyck R, Rubinfeld D. Econometric models and economic fore-

cast. 3rd ed. New York: McGraw-Hill; 1991.
9. Stanley JC. In: Thorudike RL, editor. Educational measurement.

Washington, DC: American Council on Education; 1971.
10. Steltiz C, Jahoda M, Deutsch M, Cook S. Research methods in so-

cial relations. Rev ed. New York: Holt Rinehart and Winston; 1959.
11. Trochim. Http:ITrochim.Human.Cornell.Edu. 1998 (cited. http:/

trochim.human.cornell.edu)

7-Montoya 6/16/03, 09:03 AM162

 on M
ay 3 2024 

http://hw
m

aint.clsjournal.ascls.org/
D

ow
nloaded from

 

http://hwmaint.clsjournal.ascls.org/

