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Abstract 

The late 1800s through the early 1900s saw the rapid development of growth media containing 

various substrates, i.e. carbohydrates, to identify and differentiate microbes isolated from clinical 

specimens. However, during the 1950s, an evolution of diagnostic services occurred created by a 

growing population with access to health insurance and the subsequent requirement for quality 

healthcare. The utilization of miniaturized, multi-test kits provided the first significant 

advancement of the biochemical, growth-based approach needed to handle the increased demand 

for clinical services. These testing kits provided reductions in labor and material costs associated 

with making, maintaining, inoculating, and reading tubed and plated media, while also reducing 

the time required to identify microbial isolates. The trend to improve laboratory efficiency and 

quality continued with the incorporation of automation and computers throughout the 1970s. 

Automated systems greatly increased the testing capacity of laboratories by allowing the 

simultaneous determination of identification and antimicrobial susceptibilities from one 

inoculum, and by further reducing the time to identification to hours instead of days. Within just 

the last 10 – 15 years, development and integration of a new growth-based approach for 

identification has occurred in the form of matrix-assisted laser desorption ionization-time of 

flight mass spectrometry (MALDI-TOF MS). The mass spectrometric approach provides the 

lowest cost per analysis and fastest time to identification after isolation of any current technique 

available in the microbiology laboratory. As healthcare costs and demand continue to increase, 

and more hospitals look to consolidate laboratories, fully automated facilities incorporating mass 

spectrometry for identification, along with molecular methods, will become commonplace. 
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Abbreviations 

API – Analytical Profile Index, AST – Antimicrobial Susceptibility Testing, MALDI-TOF – 

Matrix Assisted Laser Desorption Ionized-Time of Flight, MS – Mass Spectrometry, TTR – 

Time to Result, PCR – Polymerase Chain Reaction, TSI – Triple Sugar Iron 
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Index Terms 

Automation, Biochemical Test, Tube-based Tests, Culture Media, MALDI-TOF 
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Learning Outcomes 

1. Recognize different biochemical approaches to microorganism identification used in the 

clinical microbiology laboratory, including specific examples of tube-based, test kit, and 

automated methodologies. 

2. Compare and contrast the advantages, disadvantages, and performance characteristics of each 

approach to identification, and determine the usefulness of each in addressing a specific 

clinical situation. 

3. Identify the factors which drove the development of new biochemical technologies to address 

the evolving healthcare industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 on M
ay 17 2025 

http://hw
m

aint.clsjournal.ascls.org/
D

ow
nloaded from

 

http://hwmaint.clsjournal.ascls.org/


6 
 

Introduction 

The utility of the biochemical, or metabolic, test has been on display for nearly 150 years 

for the isolation and identification of microorganisms causing infectious disease, due in large 

part to the very nature of microbial versatility. With the establishment of the germ theory of 

disease (1870), medical researchers were presented with a challenge to prove the link between 

microbe and disease. Instruction on how this could be accomplished came in the form of Koch’s 

postulates (1882), along with contributions from other researchers, with the specific requirement 

that a disease-causing agent must be isolated on culture media.1 Thus, what ensued was an age of 

great experimentation and discovery into the various growth properties of bacteria and other 

microbes, which was as reliant on knowledge of biochemistry as it was on standard microbiology 

techniques.2  

Development and Use of Plate and Tube-Based Media for Identification 

The need to cultivate and isolate infectious bacteria or fungal organisms led researchers 

to explore various nutrient-rich sources for organism growth. They began with the reasonable 

assumption that bodily fluids, and by extension basic organic components such as protein and 

carbohydrates, would provide that source for growth. It was quickly observed that culture media 

containing blood, peptones, and even potatoes (among other ingredients) were quite effective for 

growing many different bacteria.2, 3 In the late 1800s, the ability of certain bacteria to ferment 

particular carbohydrates, resulting in the formation of acid and gas, was noted to be a useful 

differential indicator for separating out members of the Enterbacteriaceae (referred to at the time 

as the colon-aerogenes family) and other gram negative bacilli from clinical and environmental 

specimens.4-6 This led to the formation of the Durham tube, MacConkey agar, and eventually 

triple sugar-ferrous sulfate (now TSI) media.4, 7-9 Other chemical reactions resulting in pH 
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changes were observed and by incorporating indicators in media, allowed detection of acidic and 

alkaline products, such as with citrate utilization10 and urease production.11  

From 1900 through 1950 the enzymatic versatility of bacteria was harnessed in many 

single-test solid, semi-solid, and liquid media where metabolic end products could be detected 

with the addition of a chemical reagent. Enzyme profiles through testing of nitrate reduction,12 

indole formation,13 oxidase production,14 and amino acid utilization15, 16 allowed laboratorians to 

differentiate among the ever-growing list of bacteria responsible for infectious diseases. 

Continued refinement of these diagnostic tests allowed for the development of rapid, or spot, 

testing for some compounds, resulting in quicker preliminary identification of enteric pathogens 

and common gram positive isolates.14, 17, 18 Thus, by the middle of the 20th century the 

biochemical, growth-based approach became a well-defined and effective methodology inside 

the diagnostic laboratory. Through the utilization of various growth substrates incorporated into 

solid and liquid media, a unique metabolic pattern of an unknown microorganism could be 

established thereby providing a repeatable method for identification.  

By 1965, the number of diagnostic tests utilized by the laboratory could range from five 

to over twenty depending on the type of bacterium isolated, the level of identification required 

(genus only or species), and the commonality of the organism.14, 19 It became increasingly clear 

that the sheer volume of diagnostic tests, the increasing number of specimens submitted for 

identification and the amount of data accumulated would require medical microbiology 

laboratorians to develop more efficient methods and technologies to handle the growing 

demand.14, 20   

Improved Efficiency through Computation and Miniaturization 
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 As the population continued to increase from the turn of the century through the 1960s,21 

so too did the demand for health care, hospital utilization and laboratory services.22-24 It was not 

only the increase in quantity of specimens but a demand for better quality of service, primarily 

due to the growth of public and private insurance, which required diagnostic laboratories to adapt 

methodologies and practices for improving efficiency.24, 25 These methodologies mainly occurred 

through two avenues: computer-assisted identification and streamlining of tests through 

miniaturization.  

To aid the bacteriologist in identification, flow charts, dichotomous keys and diagnostic 

tables were usually consulted to guide one from preliminary through confirmatory testing. A step 

toward a more standardized process came in the form of cards containing a punched out hole for 

each biochemical test.19 During the course of identification, the medical microbiologist would 

record their results by notching the holes for positive tests, then consult master cards obtained 

from reputable sources to match an identification. With the introduction of automatic data 

processing, the amount of physical material kept and time spent “looking up” an isolate were 

reduced, as were the errors associated with manually reading and matching results. Computing 

improved the accuracy of identification as well, once databases were updated for newer tests and 

organisms. Computing improved accuracy through the use of probabilities analysis (Bayesian 

theorem) which allowed for determining the statistically most probable isolate from a collection 

of established results.20, 26, 27  

At the same time, laboratories and researchers were collectively working to standardize 

and streamline testing procedures in order to more consistently differentiate microorganisms so 

time was not wasted on repeat testing or misinterpretation.20  Test miniaturization provided the 

next big improvement in laboratory efficiency in the form of multi-test kits. Until the 1970s, the 
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great bulk of required isolation and identification culture media was made in-house at each 

diagnostic laboratory, requiring significant time, materials, and storage space,19, 28 as well as 

generating significant amounts of waste. Conventional plate- and tube-based testing, while 

versatile and effective for bacterial and yeast identification, could require approximately 8-20 

tubes and take an average of 48 – 96 hours for complete interpretation after isolation, even for 

the more common aerobes and facultative anaerobes.14, 19, 24 Depending on the number of 

specimens and organisms submitted, the laboratory could have hundreds of tubes resting in 

incubators at any given time, creating a logistical headache along with the tedium from manually 

inoculating and reading such a high volume of tubes.24   

Some of the first steps toward the multi-test approach were conventional tube-based 

media containing two or more observable reactions (Table 1), such as Russell’s double sugar, 

Kligler’s iron, and triple sugar iron agars,8, 29 and the use of paper discs or strips (PathoTec) 

impregnated with dried reagents.30, 31 A two-tubed (R-B media) identification system for 

members of the Enterobacteriaceae was designed to allow simultaneous testing of up to eight 

biochemical reactions.32 A significant development in testing efficiency came from the work of 

Hartman, Buissiere, and Nardon who established many of the physical and chemical 

requirements of a multi-test micromethod.33, 34 The outcome of this work produced the Analytab 

system (API), a plastic strip containing 20 small capsules or micro-tubes, with each capsule 

containing a dehydrated biochemical substrate for testing metabolic usage.35 From 1969 to 1979, 

a number of additional miniaturized multi-test kits appeared in medical laboratories, including 

the AuxoTab, Enterotube, Micro-Media, and Micro-ID systems.36, 37 Despite differences in 

design, the number of tests carried out, and incubation times, all of the multi-test kits were based 

on adding a standardized inoculum to the system and observing for visible color changes in each 
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testing compartment after incubation. These color changes were produced either spontaneously 

or after the addition of reagents.36  

The miniaturized multi-test approach brought many benefits and improvements to the 

diagnostic capabilities of the medical laboratory compared with conventional plate and tube-

based identification. After the initial release of these systems, many underwent further 

refinement that improved both efficiency and accuracy. Ease of use and storage, readily 

disposable after use, accurate for identification, more economical in terms of data provided, and 

decreased time to identification were all advantages of this approach.35-38 The API system 

became the prototype kit adopted in many laboratories due to its versatility in usage for many 

groups of bacteria (Figure 1).  

Utilizing the API 20E system instead of conventional tube-based testing for members of 

the Enterobacteriaceae reduced by more than half the total cost per identification of an isolate, 

accomplished through a reduction in both labor and media.39 For common gram-positive and 

gram-negative bacteria, the API gave ≥90% congruence with conventional biochemical testing 

methods, making it a reliable alternative.40-42 Additionally, other kits were developed for the 

typically hard to grow and test species of Streptococcus, Neisseria, and Haemophilus. 

Subsequent development of rapid test kits allowed reproducible results obtained more quickly for 

testing of common anaerobes as well as other fastidious organisms, with a time to identification 

in the range of 4 – 48 hours.28, 43, 44 

Maximizing Efficiency with Automation 

 As the number of individuals seeking quality health care continued to rapidly increase, so 

too did the cost of providing required healthcare, driving the demand for quicker, more efficient 

and accurate microbiology diagnostic services.25, 45 While utilizing multi-test kits provided many 
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advantages as previously outlined, there were still opportunities to improve upon the formula. 

Miniaturized kits required manual inoculation, addition of external reagents and interpretation of 

results, which were prone to inconsistences and errors, requiring further time to complete. The 

API 20E system required at least three minutes to inoculate and ten minutes to interpret after 

incubation per test;36, 38 kits providing more tests could take even longer. When only a few 

samples are involved this time requirement is fairly insignificant. However, inoculating and 

reading 50 – 100 samples a day would require substantial labor and time in comparison.  

 Automatic data processors had demonstrated their efficiency and effectiveness for years 

and were now widely available to medical laboratories. It now became possible to explore the 

utility of automation in bulk microbial identification. The AutoMicrobic System (Vitek), born 

out of a National Aeronautics and Space Administration (NASA) initiative to identify 

microorganisms in a spacecraft environment, was subsequently modified in 1973 to identify 

clinical isolates directly from urine specimens.46 While successful identification rates were high, 

it was not cost effective to run every specimen directly through the system without isolation and 

screening procedures to eliminate unnecessary reagent waste and technician time.47 This system 

was further modified to run identification tests from a standardized inoculum containing one 

organism. From the late 1970s through the early 2000s, additional automated and semi-

automated systems based on metabolic and enzymatic analyses were developed and further 

refined including, but not limited to, MicroScan, Phoenix, Sensititre and Vitek systems (Table 1), 

each with their own custom substrate cartridge, kit, panel, or plate for testing.48-50  

 Fully automated instruments are responsible for the majority of specimen identification in 

hospitals today. They can vary slightly or considerably from one another in their degree of 

automation, spectrum of organisms identified, method of inoculation, sample capacity, and 
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turnaround time.51-53 Automated instruments use turbidometric, colorimetric and/or fluorimetric 

principles for quicker, and usually, more statistically confident identification of isolates 

compared with any manual, kit-based method.50, 51, 54 More so, automated methods, regardless of 

the particular instrument used, have increased the total number (>200) of clinical isolates that 

can be inoculated, incubated, and identified within the span of 24 hours. Thus, laboratory 

productivity is increased without sacrificing quality of results.52, 54, 55  An equally, if not more, 

significant advancement with automated biochemical systems over their manual counterparts is 

the ability to simultaneously determine an unknown isolate’s identification and antimicrobial 

susceptibility patterns in the same device under the same condition (Figure 2).  

With the widespread use of antibiotics and the concurrent observation of antimicrobial 

resistance, the need to conduct antimicrobial susceptibility testing (AST) became a necessity. 

AST was initially developed and standardized through the Kirby-Bauer56, 57, or disk diffusion, 

method. Standardized macro- and micro-dilution methods for minimum inhibitory concentration 

(MIC) determination occurred in the late 1970s.58  Before automated instrumentation became 

widely available, all AST was accomplished manually and separately from the identification of 

an isolate (Figure 1), requiring additional materials and added time, both in set-up and in 

obtaining results: minimum of 18 – 24 hours compared with as little as 3.5 – 18 hours.59, 60 The 

decrease in turnaround time, for both identification and antimicrobial susceptibility 

determination, ultimately led to a shorter length of stay for patients (~ one day shorter) and 

decreased mortality rates, resulting in substantial cost savings through a reduction in additional 

laboratory tests and performance of fewer invasive procedures.60, 61 Today’s automated 

instruments come with extensive databases and analytics software that allow further scrutiny of 

AST results for detection of resistance and atypical patterns, while providing the ability to 
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communicate information faster with pharmacy personnel to deliver real-time adjustments to 

patient care.62, 63  

Currently, automated and semi-automated biochemical testing are the most widely 

utilized approach to microbial identification and antimicrobial susceptibility determination for 

the majority of bacterial and yeast isolates.64 Additionally, automated modular machines, 

including Kiestra and WASP, have been developed to handle the processing, inoculation, and 

incubation of bulk, routine specimens such as urine and swabs, as well as providing growth 

imaging and isolate selection.65 Nevertheless, automated technologies have not simply replaced 

all prior biochemical methodologies, regardless of laboratory capacity.  

Prepackaged, multi-test kits and tube-based media are still routinely used for fastidious, 

hard-to-grow and rarely encountered organisms including viridians streptococci, species of 

Neisseria and Haemophilus, some non-fermenting gram-negative rods, Vibrio species, 

mycobacteria, and anaerobes which may not be identified accurately, or in many cases unable to 

be identified, with automated methods.44, 52, 55, 66-68 Other, non-metabolic based methods, such as 

serology and molecular, have provided additional approaches to microbial identification without 

the need for isolation and growth of problematic organisms. Moreover, determining the 

antimicrobial susceptibility patterns of these same microorganisms, when necessary, requires 

non-automated methods as well, such as disk diffusion and Etest (bioMerieux), for accurate 

results.63  

A New Paradigm in Culture-Based Testing 

 With growth-based biochemical methods handling the bulk identification of common 

bacteria and yeast, can we expect any further advancement in application and instrumentation 

within this approach? The development of chromogenic media, refinement of testing panels, 
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improved optics, and more robust software analytics have provided some increase in efficiency 

and accuracy in recent years.68, 69 While it is hard to anticipate future innovation, it is unlikely 

that we will see such significant improvement of current biochemical diagnostic techniques as 

have occurred with the transition from tube-based testing, to miniaturized test kits, and finally to 

full-scale automation. The limiting factor here is the dependency on microbial growth and 

substrate utilization for identification. Use of mass spectrometry for the identification of 

pathogenic bacteria (Table 1), first described in 1975, represents a unique phenotypic approach 

which has recently become a very practical method for speciation of a wide array of 

microorganisms in the clinical setting.70-73 

 Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass 

spectrometry (MS) is not a traditional biochemical technique; organisms are not grown with 

various substrates to determine metabolic usage and specific enzyme production is not detected.  

Best described as an analytical chemistry identification method, MALDI-TOF determines an 

organism’s protein “fingerprint” by bombarding a single colony with a high-energy laser to 

produce individual peptide fragments which vary in size, yielding a unique chemical spectrum.74 

It is not the first non-utilization-based method used for identification; gas and liquid 

chromatography techniques were developed in the 1980s and 1990s to identify bacteria and yeast 

based on their cellular composition.51, 64, 75 However, MALDI-TOF is a true departure from any 

other phenotypic approach in its functional, efficient and accurate application to nearly all groups 

of microorganisms.76 This approach has shown to consistently perform, at the very least, as well 

as automated biochemical methods, though usually better.77 Indeed, mass spectrometry is the 

most likely technique to completely replace current automated, growth-based systems for routine 

identification of isolates, as has already occurred within many diagnostics laboratories (Figure 
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3). This includes for the identification of rarely encountered, fastidious and slow-growing 

organisms such as species of Campylobacter and Helicobacter,78 Legionella,79 

Mycobacterium,80, 81 anaerobes,82 non-fermenting bacteria,83, 84 yeasts85, 86 and filamentous 

fungi.87, 88  

 The capability to accurately and precisely identify bacteria and fungi at an extremely low 

cost-per-sample analysis is yet another advantage of the mass spectrometric approach (Figure 4). 

Long and short-term studies have shown significant reductions in costs when comparing 

conventional and automated approaches with MALDI-TOF MS.73, 76, 85  One 11 year study 

demonstrated a five-fold and a nearly 100-fold reduction in the average cost-per-test compared 

with current phenotypic and gene sequencing methods, respectively.83 Other studies have 

supported these findings, revealing an approximate cost of $0.50 - $2.00 for each identification, 

depending on the specific instrument used and the type of isolate.73, 89, 90 The initial cost of a 

MALDI-TOF MS instrument can be a limitation for smaller laboratories with a price range of 

$180,000 – $200,000;89 however, the savings from lower operating and labor costs and a 

reduction in repeat testing, subculture media and waste can offset the initial cost within one year 

depending on the number of samples routinely analyzed.77, 91  

Without the need for microbial growth after isolation, time-to-result (TTR) is greatly 

reduced compared with conventional methods as well (Figure 4), with the majority of 

identification results (87 – 93%) obtained 12 – 24 hours after receipt of the initial specimen.91, 92 

Once a sample is placed on the instrument, identification typically occurs within 5 – 10 minutes 

depending on the organism type.74, 89, 92 The cost- and time-saving advantages of using MALDI-

TOF MS are most pronounced for the workup and identification of slow-growing bacteria, 
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specifically anaerobes and mycobacteria, where a result may be obtained within minutes after 

isolation instead of days or weeks.  

Limitations of MALDI-TOF MS in identifying some organisms are largely due to a lack 

of sufficient reference spectra in databases.64, 83 Currently, databases are proprietary, unlike 

databases of genetic sequence, so they require manufacturer updates to enhance detection 

limits.64 Laboratories may build their own in-house databases to further improve the instruments 

capabilities, though the quality of spectra obtained must be ensured through molecular means to 

prevent spreading of erroneous data.77, 89 Some organisms, such as E. coli and Shigella species, 

may not be reliably identified owning to nearly identical genetic profiles, and thus, nearly 

identical protein fingerprints. Human error, inadequate training, culture conditions and media 

composition are also sources of potential result variability with MALDI-TOF, as the current 

iterations of this technique require specific pre-analytical techniques depending on the type of 

microorganism being tested. Additionally, laboratories currently using MALDI-TOF MS as the 

primary method of identification must still rely on automated biochemical instruments and 

manual methods for determining antimicrobial susceptibilities.  

Future Applications and Prospects 

 The requirement to first isolate an infectious agent from a clinical sample is always 

required with any current biochemical and growth-based approach, including mass spectrometry 

in its current state. As such there is still some inherent risk when handling select agents and some 

organisms which cannot be isolated, or are very difficult to do so, still require other means of 

testing.89  Serological and molecular techniques provide the means to test for organisms directly 

from specimens, thereby providing a potentially quicker identification while avoiding the 
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inherent difficulties and risks of isolating and growing especially dangerous or fastidious 

microbes.  

Nevertheless, MALDI-TOF MS has been shown to reliably identify organisms directly 

from some clinical specimens, including blood and urine, while other specimen types are 

currently being investigated.89, 93 Likewise, there is potential for MALDI-TOF MS to 

differentiate individual strains of microorganisms, as well as detect antimicrobial resistance and 

resistant mechanisms, including β-lactamase and carbapenemase production, and detection of 

MRSA protein-specific spectra.94, 95 It is also possible to apply the mass spectrometric approach 

to other biomolecules, such as base nucleotides, to produce new methodologies like polymerase 

chain reaction electronspray ionization mass spectrometry (PCR/ESI-MS).96  This hybrid 

technique combines the speed and utility of MALDI-TOF MS with the sensitivity and specificity 

of PCR amplification. Future advancements and applications will likely focus on incorporating 

these existing technologies into a fully integrated and automated system, from processing, 

incubation, isolation, to identification, so as to reach maximum operational efficiency by further 

reducing costs and turnaround time. Further work is necessary to improve the efficiency and 

practicality of these particular MALDI-TOF MS applications in order for them to be adopted for 

routine clinical usage. 

Conclusions  

 The biochemical and growth-based approaches in the diagnostic laboratory were initially 

born out of the discovery of microorganisms and the need to confirm their causative link to 

infectious disease.  As the need and requirement for quality healthcare became commonplace, 

laboratories improved diagnostic capabilities and increased testing capacity, without sacrificing 

quality of results, by first utilizing miniaturized, multi-test kits followed by computer automation 
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for the routine identification of clinical isolates. From its initial inception in the late 1800s to 

within just a few years ago, growth-based, biochemical identification methods have been the de 

facto method of choice for hospital-based microbiology laboratories. Now, we have entered a 

new era of diagnostic testing where the routine approach is based not on what an organism’s 

proteins do, but by the proteins themselves.  

A laboratory’s capacity to adopt new methodologies and technologies is dependent on 

many factors though, and newer approaches such as MALDI-TOF will not, and cannot, be 

utilized by every microbiology department, as it may not be cost effective or practical for smaller 

capacity hospitals. However, with the continual increase in cost of and demand for healthcare 

services coupled with the level of accuracy and efficiency offered by MALDI and other newer 

techniques, more and more laboratories will make the change. As diagnostic laboratories 

continue to consolidate into fewer, but larger, testing facilities embracing full-scale automation, 

traditional approaches and methods will continue to be replaced.97 While medical laboratory 

technicians and scientists have always needed to acquire new skills and knowledge to use new 

methods and tools as they become available, the underlying principle behind these techniques 

has remained relatively unchanged until very recently. It is becoming more likely that the 

instilled art and practice of memorizing and reading biochemical growth patterns will no longer 

be required of the diagnostic microbiologist. 
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Table 1. Summary of biochemical approaches and techniques discussed. 

Abbreviations: API, analytical profile index; AST, antimicrobial susceptibility testing; ID, 

identification; MALDI, matrix-assisted laser-desorption ionization; MS, mass spectrometry. 

 

Approach 
Isolation 
Required 

Growth 
Required for ID 

Examples Description of Approach 
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Single Tube 
Tests 

Yes Yes 

Christensen’s 
urea agar, 
Simmons’ 

citrate medium 

Each tube needed requires 
inoculation, one reaction 
per tube, may need 8 – 20 

different tubes for 
identification 

     

Multi-Test Tube 
Systems 

Yes Yes 

Durham tube, 
Kligler’s iron 
agar, Triple 
sugar iron 
agar, R-B 

media 

One inoculation per 
system, more than one 

reaction possible in each 
tube 

     

Rapid (Spot) 
Tests 

Yes No 

Catalase, 
Oxidase, 

Indole 
production 

Individual colony mixed 
with a reagent, reaction 

develops within seconds, 
based on preformed 

enzyme 
 

Multi-test Kits Yes Yes 

PathoTec, API, 
AuxoTab, 

Enterotube, 
Micro-Media 

Manual inoculation of trips 
or tubes containing small 
compartments of media, 

able to test for ≥8 reactions 
in each kit 

 

Automated 
Growth-Based 

Systems 
Yes Yes 

Vitek, 
MicroScan, 

Phoenix, 
Sensititre 

Single inoculum device 
loaded onto small-to-large 
capacity machines, capable 
of ID and AST at the same 

time 
 

Mass 
Spectrometry 

Yes/No No 
Vitek MS, 
MALDI 
Biotyper 

Single colony inoculated 
on plate, laser fragments 

cell into peptidic 
fragments, AST on 
separate automated 

instrument 
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Figure 1: Scheme for the identification and antimicrobial susceptibility testing of a clinical 

isolate using a miniaturized test kit approach. 
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Figure 2: Scheme for the identification and antimicrobial susceptibility testing of a clinical 

isolate using a standard automated, biochemical approach. 
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Figure 3: Scheme for the identification and antimicrobial susceptibility testing of a clinical 

isolate using the MALDI-TOF approach. 
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Figure 4: Qualitative comparison of biochemical and growth-based approaches to identification. 

Cost per test includes materials and labor as estimated by studies cited and discussed in the text.  
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