Emicizumab and the Clinical Coagulation Laboratory ## **Learning Objectives** The reader should be able to: - 1. Discuss emicizumab, including its mechanism of action and its importance in the treatment of hemophilia A. - 2. Discuss how and to what extent emicizumab effects the accuracy of conventional coagulation tests. - 3. Discuss the use of unconventional global coagulation tests as alternatives to assess the quantitation and effectiveness of emicizumab. #### **Abbreviations** APCC – activated prothrombin complex concentrate, APTT – activated partial thromboplastin time, BPA – bypassing agents, Ca2+ - calcium, CSA – chromogenic substrate assay, EGF – epidermal growth factor, ELISA – enzyme linked immunosorbent assay, FDA – U.S. Food and Drug Administration, FIX – factor IX, FIXa – activated factor IX, FVIII, factor VIII, FVIIIa – activated factor VIII, FX – factor X, HA – hemophilia A, OSA – one stage assay, PL – phospholipid, rhFVIIa – recombinant human activated factor VII, ROTEM – thromboelastometry, TEG – thromboelastography, TGA – thrombin generation assay #### **Index Term** hemophilia A, emicizumab, Hemlibra, global assays, thromboelastography, thrombin generation assay #### **Abstract** Emicizumab, a novel therapeutic agent for patients with hemophilia A, is a humanized, asymmetric, bispecific, IgG4 monoclonal antibody designed to mimic the function of activated factor VIII. Clinical studies have demonstrated its utility in the successful treatment of hemophilia A patients with and without anti-factor VIII alloantibodies. The conventional methods currently used for monitoring management of hemophilia A will be discussed along with why they may be inappropriate for patients receiving emicizumab. Alternative methods, i.e global testing, will be presented and discussed in the context of emicizumab. With the increasing availability of treatment with emicizumab it is important the clinical laboratory understands the mechanism, interaction with conventional coagulation assays, and alternative methods for its monitoring. This review describes and discusses the different assays used to measure the effectiveness of emicizumab, as well as monitor factor VIII activity in patients with hemophilia A. #### Introduction Hemophilia A (HA) is an X-linked hereditary bleeding disorder associated with bleeding into joints and muscle tissues and is characterized by absent or reduced quantity or dysfunction of coagulation factor VIII (FVIII). Administration of replacement factor concentrate with either plasma derived or recombinant FVIII concentrates forms the standard treatment in patients with severe HA (<1% factor activity), with nearly all HA boys in the US, Canada, Australia and Northern Europe receiving prophylactic treatment, resulting in reduced morbidity and mortality compared to on-demand therapy. Such replacement therapy has successfully changed the natural history of severe HA. Previously, such patients experienced frequent bleeding events throughout life that significantly reduced quality of life and shortened life-span. Now, patients adherent to a regimen of regular replacement with concentrates of FVIII can essentially avert all but a small number of bleeding events and experience a near-normal lifespan and quality of life.¹⁻³ Despite these benefits, approximately 50% of severe HA patients have an annual bleed rate of more than two despite regular replacement of the missing clotting factor administered as prophylaxis.³⁻⁶ Achieving optimal outcomes is hindered by lack of adherence to the FVIII dosing regimen which requires frequent, intravenous injections of concentrates of FVIII^{7,8} and achieving circulating FVIII levels sufficient to prevent bleeding including with physical activity.⁹ Even if adherence to a prophylaxis regimen is optimal, bleeding still occurs resulting in long-term morbidity, primarily from chronic synovitis and the development of debilitating joint disease.⁶ Significant barriers still remain for the treatment of patients with HA. Extended half-life FVIII products (half-life ~1.5 fold of FVIII) have been developed to reduce the frequency of intravenous infusions; however, treatment is still required twice per week. Regardless of the product being administered, drawbacks such as high cost and complications associated with securing venous access, particularly in infants, continue. The most feared and clinically significant complication of factor replacement is the development of alloantibodies directed against the exogenous FVIII molecules. Inhibitors to FVIII occur in approximately 1/3 of those with severe HA, typically within the first 20 exposures to exogenous FVIII early in the first 2-3 years of life. Most importantly, they render factor replacement therapy ineffective, exposing patients to an unacceptably high risk of morbidity and mortality due to uncontrollable bleeding. In the first 2-3 years of life. These important considerations have lead the way to developing alternative approaches for long-term prophylaxis of HA patients with or without inhibitors. Among these approaches is the development of a new class of therapeutic agents not based on coagulation factors which act by enhancing coagulation (emicizumab) or inhibiting anticoagulant pathways (fitusiran and concizumab – under development and being tested in clinical studies).¹⁵ These drugs require methods other than the conventional coagulation tests for monitoring. Laboratory evaluation of hemophilia will, therefore, undergo dramatic changes in the near future.^{16,17} This review will focus on the novel drug, emicizumab, a recently FDA-approved for the treatment of HA patients without or with inhibitors. #### **Emicizumab** ## Development of Emicizumab Emicizumab (Hemlibra, ACE910, RG6013, RO5534262, created by Chugai Pharmaceutical Co, Ltd, and co-developed by Chugai, Hoffmann-LaRoche and Genetech) is a humanized, asymmetric, bispecific, IgG4 monoclonal antibody designed to mimic the function of activated factor VIII (FVIIIa) which may be missing or defective due to a gene mutation in the *F8* gene resulting in HA. Its development is a technological feat, briefly described here. Kitazawa et al published in 2012¹⁸ the compilation of nearly a decade of development of a bispecific antibody with one Fab unit binding the active enzyme factor IX (FIXa), and the other binding the zymogen factor X (FX), uniting the coagulation factors together in the proper conformation for activation of FX. This was accomplished by developing 200 anti-factor IX (FIX) and 200 anti-FX Fab units and combining them to create a library of 40,000 combinations. The antibody with the combination of an ideal low binding affinity and superior activity in activated factor X (FXa) production in the setting of clot formation was selected. This candidate antibody was tolerated at high doses in animal models and corrected the hemostatic defect in a HA cynomolgus monkey model.¹⁹ ## Mechanism of Action Emicizumab, through its bispecific monoclonal antibody structure, binds via one arm to the epidermal growth factor (EGF)-like domain 1 of FIX/FIXa and the other arm to the EGF-like domain of FX/FXa, mimicking the cofactor activity of FVIIIa. This bridging leads to a significant acceleration of FIXa-mediated FX activation and ultimately to increased thrombin generation. ²⁰ (Figure 1) Despite the similarity in function between FVIII and emicizumab recent studies have demonstrated differences in binding affinity and disruption of normal hemostatic regulation ²¹ which have implications for pharmacokinetics and dosing consideration for emicizumab prophylactic usage. The functional mechanisms of emicizumab have recently been reviewed. ^{22,23} # Clinical Studies of Emicizumab Emicizumab has undergone extensive clinical evaluation in multiple global, multicenter clinical trials that evaluated the safety, efficacy, and pharmacokinetics of emicizumab in HA patient populations including pediatric, adolescent and adult HA patients with and without anti-FVIII inhibitors. These studies were limited to small numbers of patients, especially those with inhibitors, and none were done in head-to-head comparisons between emicizumab and current HA therapies. They have been recently reviewed. 3,24,25 Briefly, these studies have shown substantial reductions in bleeding rates as well as improvement of health-related quality of life. Advantages of emicizumab are that it is administered subcutaneously rather than intravenously, weekly to monthly rather than 2-3 times per week, and can be used in patients with or without inhibitors, offering the former patients for the first time a convenient and prophylactic option. Following a loading dose of 3 mg/kg weekly for 4 weeks and a maintenance dose of 1.5 mg/kg weekly, 3.0 mg/kg every 2 weeks or 6 mg/kg every 4 weeks, steady state levels can be achieved without the constant peak and troughs associated with conventional FVIII replacement therapies. It has been speculated that any of these maintenance doses prevents spontaneous bleeding and minor trauma-induced bleeds, that is, changing the HA phenotype from severe (< 1% FVIII) to mild (10%-15% FVIII). No anti-drug antibody was initially reported in the clinical studies; however, use of an optimized enzyme linked immunosorbent assay (ELISA) drug immunoassay indicates antibodies were present. Of 398 patients, 14 (3.5%) tested positive and anti-drug antibodies. For 7 patients, the antibodies were classified as transient while 3 patients were classified as having neutralizing potential (0.75% of the overall population).³⁰ Early in the clinical studies several cases of thrombotic microangiopathy, thrombosis, and death were noted in patients with anti-FVIII inhibitors or break-through bleeding events receiving repeated, high doses (>100 U/kg/d for >1 day) of activated prothrombin complex concentrates (APCC). It was postulated that this treatment regimen may lead to accumulation of large doses of the substrates FIXa and FX, leading to a massive synergistic effect on increasing thrombin generation. *In vitro* experiments show that an analogue of emicizumab, combined with APCC, led to a 17-fold increase in thrombin generation, well above the normal physiologic range. It is now recommended not to administer APCC to persons treated with emicizumab, unless absolutely indicated and only in an in-patient setting. 31,32 Emicizumab was approved by the FDA in November 2017 for use as routine prophylaxis administered once a week to prevent or reduce the frequency of bleeding episodes in adults and children ≥ 12 years of age with HA with FVIII inhibitors. It was later approved by the FDA in October 2018 for use in patients with hemophilia A without FVIII inhibitors²⁹. The major achievement of emicizumab over other HA therapeutics is in its subcutaneous route for administration, long half-life of 28 days, and increased efficacy in bleed prevention regardless of the absence or presence of anti-FVIII inhibitors. ^{26,33} # **Laboratory Testing** #### Measurement of FVIII and FVIII inhibitors Two functional assays most commonly used for quantification of FVIII are the one-stage clotting assay (OSA) and the chromogenic substrate assay (CSA) (Figure 2). The OSA measures the ability of patient plasma to reduce the APTT clotting time of FVIII or FIX deficient plasma (obtained from congenitally deficient patients or immunodepleted normal pooled human plasma). Different dilutions of patient plasma are added to deficient plasma and pre-incubated with an APTT reagent containing phospholipid (PL) and a contact activator (e.g. silica, ellagic acid, kaolin, polyphenols). After a set incubation time calcium chloride (Ca²⁺) is added and the time to fibrin clot formation is measured according to the analyzer's methodology and algorithm. The result is interpolated from a calibration curve generated with a reference plasma of known FVIII and FIX concentrations.³⁴ The large number of APTT reagents, deficient plasmas, reference plasmas, instruments and combinations thereof results in a high level of variability. 35-37 The CSA for FVIII is a two-stage assay. In the first stage, a reagent containing purified FIXa, FX and thrombin, as well as PL and Ca²⁺, are added in optimal concentrations to the patient's plasma, resulting in the generation of FXa. This step does not require the extrinsic or intrinsic pathways due to the direct activation of FVIII by thrombin. In the second stage, the amount of generated FXa is measured by cleavage of a FXa-specific chromogenic substrate, releasing paranitroanaline which causes a color change detected spectrophotometrically at 405nm. 34,38,39 Anti-FVIII inhibitors can be identified in the laboratory most commonly using the OSA, but also using the CSA or an ELISA. 40 The classic Bethesda assay involves normal pooled plasma as the source of FVIII being incubated in undiluted patient plasma for 2 hours at 37°C and then assayed for residual FVIII via OSA or CSA. One inhibitor unit (Bethesda Unit, BU) is defined as the amount of patient plasma that destroys 50% of the FVIII in the mixture, corrected for the deterioration of FVIII in a control consisting of normal plasma incubated with buffer. Positive results may require further dilution of the patient plasma to be assayed to obtain an accurate result. 40-42 The Nijmegen modification of this assay has been shown to increase the specificity of low-titer FVIII inhibitors. The modification involves buffering the normal pooled plasma, used in patient and control mixtures, to pH 7.4 with imidazole buffer and using FVIII-deficient plasma in the control mixtures for preparing patient dilutions. Both adjustments maintain the pH of the reaction mixture for the 2-hour incubation and thereby stabilize FVIII in the pooled normal plasma.⁴³ In comparison to the OSA, the CSA procedure is more standardized and offers higher interlaboratory precision in measurement of FVIII plasma activity.³⁹ #### Effect of emicizumab in current coagulation laboratory assays While emicizumab mimics the activity of FVIIIa, the structure as well as biochemical and functional properties of the two molecules are known to be different. For example, emicizumab binds to both human FIXa and FX resulting in interference with all intrinsic pathway clotting-based assays. Also, emicizumab does not require activation by thrombin to facilitate propagation of the clotting cascade, eliminating the major rate-limiting step to fibrin clot formation, resulting in the APTT appearing to normalize at sub-therapeutic emicizumab concentrations. Given the long half-life of emicizumab, residual interference on APTT and APTT-based assays can continue for up to 6 months after discontinuation of treatment. The interference analyses have shown emicizumab renders all APTT-based assays inaccurate, regardless of the reagents used. Emicizumab does not exert a similar effect on non-APTT-based clotting assays, such as thrombin time and fibrinogen assays. Chromogenic assays (e.g., protein C, antithrombin), ELISA (e.g., plasminogen) and latex immunoagglutination tests (e.g., D-dimer, free protein S, von Willebrand antigen and activity) are not influenced by the presence of emicizumab, continuing to give accurate results. There is a weak, reagent-dependent effect by emicizumab on PT and PT-based factor assays but is considered unlikely to be of clinical relevance. (Table 1) Thus, selected conventional coagulation methods may be inappropriate for monitoring of HA patients receiving emicizumab. Alternative methods may be necessary to monitor such patients. Measurement of FVIII and FVIII inhibitors in the presence of emicizumab Although emicizumab is effective in preventing bleeding events in HA patients, patients may require FVIII concentrates in certain situations during which it may be necessary to measure the FVIII activity level attained with the infused FVII concentrate. As mentioned previously, emicizumab selectively binds human FIXa and FX. This can lead to falsely elevated OSAs measurements of FVIII, with activities exceeding 150%. Consequently, all variations of OSAs and Bethesda assays using OSA should be avoided in the management of patients receiving emicizumab.⁴⁸ A FVIII CSA utilizing bovine factors, on the other hand, would not be influenced by the presence of emicizumab, as the FIXa and FX in the reaction mixture only binds to the endogenous FVIII in the human plasma sample, thus, reflecting the FVIII activity in the sample and not the coagulation potential of emicizumab. This same kit can be used to accurately measure FVIII inhibitor titers.⁴⁹ In Japan, the addition of anti-idiotype monoclonal antibodies to render emicizumab inactive, eliminating its interference with APTT-based clotting assays, has been reported to accurately measure FVIII activity. ⁵⁰ However, the assay is presently not available in the U.S. Finally, immunoassays are not affected by the presence of emicizumab and samples obtained during emicizumab treatment can be used in the solid-phase indirect anti-FVIII ELISA assay to detect and monitor FVIII alloantibodies.⁵¹ #### Measurement of emicizumab The current use of emicizumab does not require laboratory monitoring in the clinical setting as demonstrated by the efficacy of emicizumab in the recent clinical studies. However, there are scenarios in which determination of the emicizumab concentration may be needed, such as breakthrough bleeding and subsequent treatment with on-demand coagulation factors, surgical procedures, or inhibitor monitoring. In the clinical studies emicizumab concentrations have been determined by a validated sandwich ELISA. However, this assay is prepared in-house and is not commercially available. A modified version of the OSA FVIII activity assay using an emicizumab-specific calibrator and plasma-based controls has been developed and commercialized in Europe (distributed by Haemochrom Diagnostica GmbH, Essen, Germany). The reagents are available in the U.S. but are not FDA-approved. This assay follows that of the traditional FVIII OSA but calibrated with an emicuzumab calibrator and a predilution of the patient sample (1:8) to enable a dynamic range between 10 and 100 μ g/ml of emicizumab in the original plasma sample. Abstracts reporting excellent precision and reproducibility 53, significant correlation with the non-commercial ELISA method 54, and reliability in establishing whether or not emicizumab concentrations are within the previously determined efficacious range (30 – 70 μ g/ml) 55 have been published for this assay. This assay is recognized as the easiest and most accurate method for monitoring emicizumab concentration in plasma. ## **Global Testing** The on-going clinical studies of emicizumab in severe HA patients with and without inhibitors have shown impressive reductions in annual bleeding rate compared to patients receiving standard FVIII therapy.²⁴ Despite these impressive reductions in annual bleeding rates and the 4-week half-life of emicizumab, the best way to monitor emicizumab remains unanswered. Significant inter-patient variance in emicizumab metabolism and the potential for antibody development emphasizes the need for accurate laboratory monitoring.²⁴ Since emicizumab interferes with coagulation tests that measure the intrinsic pathway, monitoring response to emicizumab therapy by the traditional coagulation tests, including the global APTT test and FVIII, therefore, is unreliable.⁴⁸ There is growing interest in the use of other global assays, specifically whole blood thromboelastography (TEG) and thrombin generation assay (TGA), to monitor the patient's coagulation status during hemophilia therapy. Other assays have been reported, each in a single publication in the literature^{50,56-59} which will not be discussed in this review. #### General Principle of TEG The thrombeleastographic principle, first introduced by Hellmut Hartert in 1948⁶⁰, has been modernized in the computerized version of the TEG 5000 device manufactured by Haemonetics (Braintree, MA) and the ROTEM manufactured by Tem International (Munich, Germany). These methods measure the dynamic viscoelastic properties of whole blood during clot formation and fibrinolysis, and are believed to better represent the true physiologic mechanisms of hemostasis compared to traditional coagulation assays. The devices consist of a heated cylindrical sample cup into which a pin is suspended. In the TEG 5000, the cup oscillates at $\pm 4^{\circ}45^{\circ}$ every 5 seconds with the pin is suspended freely into the cup by a torsion wire. In the ROTEM, the cup is stationary while the pin transduction system oscillates at $\pm 4^{\circ}45'$ every 6 seconds. Once the oscillation begins, the forming clot results in a physical connection by strands of fibrin between the cup and the pin, transferring the torque of the cup to the pin. The elastic strength of this connection increases gradually as the properties of the forming clot change and a mechanical electrical transducer is used to convert the rotation of the pin to an electrical signal, which is then recorded by the computer. The computer software produces both a qualitative, graphical representation (Figure 3) and quantitative parameters (Table 2), which allow one to evaluate the phases of thrombin generation, clot formation and firmness, and fibrinolysis and judge the adequacy of a patient's coagulation system.^{61,62} Although thromboelastography is a general term, it mostly refers to the TEG 5000 device while thromboelastometry refers to the ROTEM. For the purpose of this review, the term TEG will be used to refer to both devices. ## General Principle of TGA Genetic or acquired deficiency of thrombin, the key enzyme involved in maintaining hemostasis, results in a bleeding diathesis, and excessive production of thrombin is associated with a thrombotic risk. TGAs allow for measurement of the amount and rate of thrombin generated and, therefore, can be used to evaluate the patient's overall hemostatic capacity. First described in 1953 by Macfarlane and Biggs⁶³, the TGA assay has been modified significantly over the years to make the test more practical using chromogenic or fluorescent thrombin substrates, allowing continuous measurement of thrombin activity in plasma. TF, PLs, and Ca2+ are added to the sample plasma to induce thrombin formation. The final thrombin generation curve (thrombogram) is characterized by the lag phase (coagulation initiation), thrombin burst leading to peak thrombin concentration (acceleration and propogation), and reduction of thrombin generation due to the presence of natural anticoagulants (termination). Parameters that are reported include the lag time, peak time, peak height, and area under the curve (AUC, or endogenous thrombin potential, ETP) (Figure 4). 62,64 Since TGA measures thrombin generation taking into account the function of other pro- and anticoagulant factors in the sample, it is considered to provide a more physiologic evaluation of the clotting system # Performance Issues and Limitations of TEG and TGA The two assays differ in a number of important ways. First, although both assays can accommodate whole blood, platelet-rich and platelet-poor plasma, the vast majority of studies done thus far with each device have used whole blood for TEG and platelet-poor plasma for TGA. Second, the TEG demonstrates the dynamics of clot formation overtime while the TGA demonstrates thrombin generation over time. The advantages of TEG are that it uses whole blood and measures clot formation, which comes closer to the idealized coagulation assay, while TGA measures a surrogate marker for clot formation. The main advantage of the TGA is that by using platelet-poor plasma, samples can be stored, allowing for testing to be done at any time and in an on-site or reference laboratory whereas TEG assays must be done within 2 hours of sampling, requiring it to be done locally. 61,62,64 Although the number of devices and reagents available for use with respect to global hemostasis is somewhat limited, the use of different activators and different amounts of activators, addition or not of contact factor inhibitors, and addition or not of fibrinolytic reagents has led to considerable confusion in the literature and challenges when comparing different results from different studies. The Scientific and Standardisation Subcommittee on FVIII, FIX, and Rare Coagulation Disorders of the International Society on Thrombosis and Haemostasis recently published recommendations regarding standardization of the approach for TEG and TGA in hemophilia. 65,66 # TEG and TGA monitoring of HA patients on emicizumab therapy Both *in vitro* and *in vivo* studies have been reported demonstrating the ability of TEG to predict clinical response to the bypassing agents (BPAs), APCC and recombinant human activated factor VII (rhFVIIa), in HA patients with inhibitors and to improve clinical performance of rhFVIIa during surgery. Similarly, differences in TGA results to *in vitro* addition of FVIII or normal plasma to plasma samples from patients with HA or FVIII-deficient plasma have been shown, which may provide relevant clinical information to guide prophylaxis, as well as surgical management of patients with HA. 70,71 TGA has also been used to safely guide therapy with multiple bypassing agents for the management of bleeding in HA patients with inhibitors. 72,73 With the information obtained in these early studies, the use of TEG and TGA to monitor hemostasis in HA patients was done in the emicizumab clinical trials. Nonactivated (Ca 2+triggered) TEG has shown samples spiked with emicizumab ex vivo have improved hemostatic function in a dose-dependent manner, irrespective of the presence of FVIII inhibitors and has been shown to more informative in terms of global coagulation response to emicizumab than other activators (such as kaolin, TF, etc) with TEG. However, there is some evidence to suggest analyzing samples spiked with emicizumab ex vivo overestimates hemostatic function, and further research into the accuracy of TEG in emicizumab-treated patients is needed.⁷⁴ TGA shows a linear, dose dependent increase in thrombin generation in the presence of emicizumab and can be used to monitor global hemostatic response in patients treated with emicizumab.⁷⁵ TGA has also been shown to monitor the cumulative effect of APCC or rhFVIIa with FVIII inhibitors and can be used as a tool to individually tailor BPA therapy. This is of particular interest as patients treated with BPAs for the treatment of breakthrough bleeding events, as in the various clinical trials.^{26,76} The results of an *in vitro* evaluation of clot formation and thrombin generation using TEG and TGA, respectively, for combinations of a sequence-identical analog of emicizumab with APCC or rhFVIIa have been reported. The analog in combination with APCC resulted in a 17-fold increase in thrombin generation over the analog alone, producing a probable hypercoagulable state which was confirmed by TEG. The analog in combination with rhFVIIa also produced an increase in thrombin generation, but it did not reach the normal range. This data suggests that considerable additional research is still warranted.³¹ Three case reports describing the use of global assays to help guide BPA treatment in four HA patients with anti-FVIII inhibitors have recently appeared in the literature. One report performed TEG and TGA for 2 HA patients after 1 and 2 months of treatment, reporting TEG showed complete correction while TGA showed marked improvement, but only 1/3 that of a healthy volunteer, consistent with a mild hemophilia phenotype. The other two reports used *in vitro* TEG and TGA testing of the patient's plasma with different concentrations of APCC or rhFVIIa to determine which BPA to use as well as to inform about its ideal dose. In both reports the patients were successfully supported during surgical procedures. #### **Conclusion** Emicizumab is a novel therapeutic antibody that has been shown in clinical studies to be efficacious in the treatment of HA with and without inhibitors. The benefits of emicizumab include subcutaneous administration, a half-life of 28 days allowing for reduced dosing frequency, as infrequent as monthly, greater prophylactic efficacy and benefits irrespective of the presence of anti-FVIII inhibitors. Its introduction into the clinical practice of hemophilia treatment requires adjustments in clinical laboratories that monitor FVIII activity and anti-FVIII inhibitor levels. Such laboratories must understand that the structural and functional differences between emicizumab and FVIII mean that many of the conventional assays used to monitor conventional HA treatment are no longer accurate when emicizumab is present in the sample. Specifically, emicizumab, even at subtherapeutic concentration, results in a shortened APTT, rendering the most commonly used APTT-based coagulation assays inaccurate. For example, when samples from patients receiving simultaneous emicizumab and conventional FVIII replacement products are referred for FVIII assessment and/or inhibitor screening/titration, a chromogenic FVIII assay utilizing bovine reagents would be required for the accurate measurement of FVIII activity. Thus, it is imperative the laboratory personnel receives accurate information about the patient's therapy treatment. Communication between the ordering physician and clinical laboratory is essential for delivery of accurate and appropriate results. To measure the concentration and activity of emicizumab a modified FVIII OSA calibrated against emicizumab can be used in the clinical setting; however, this assay is presently not available in the U.S. There is increased interest in global assays such as TEG and TGA for monitoring coagulation potential in HA patients receiving emicizumab. Both assays have been reported to provide clinically relevant information. The TGA has been shown to be useful in predicting an appropriate therapeutic concentration of the common BPAs, APCC and rhFVIIa. Further research, however, is necessary to confirm the accuracy of TEG and TGA in the presence of emicizumab. The ability to measure of emicizumab activity and concentration in the coagulation laboratory may require a shift from the functional assays of the past to assays that are specifically tailored for use in the patients receiving emicizumab. ## **Bibliography** - Mejia_Carvajal C, Czapek EE, Valentino LA. Life expectancy in hemophilia outcome. J Thromb Haemost 2006;4:507-509. - Khair K, Mazzucconi MG, Parra R, Santagostino E, Tsakiris DA, Hermans C, et al. Pattern of bleeding in a large prospective cohort of haemophilia A patients; a three-year follow-up of the AHEAD (Advate in HaEmophilia A outcome Database) study. Haemophilia 2018;24:8596. - 3. Rodriguez-Merchan EC, Valentino LA. Emicizumab: Review of the literature and critical appraisal. Haemophilila 2019 25;11-20. - 4. Oldenburg J, Khair K, Mazzucconi MG, Parra R, Kurnik K, Huth-Kühne A, et al. RealWorld prospective data on bleeding frequency in 1,000 patients with hemophilia A – is the goal of zero bleeds achievable? Haemophilia 2017;23(Suppl 2):16. (Abstract) - Manco-Johnson, MJ, Abshire TC, Shapiro AD, Riske B, Hacker MR, Kilcoyne R, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med 2007;357:535-544. - 6. Manco-Johnson, MJ, Lundin B, Funk S, Petery C, Raunig D, Werk M, et al. Effect of late prophylaxis in hemophilia on joint status: a randomized trial. J Thromb Haemost 2017;15:2115-2124. - 7. Tiede A, Oldenburg J, Lissitchov T, Kaub s, Bichler J, Manco-Johnson MJ. Prophylaxis vs on-demand treatment with Nuwiq® (Human-cl rhFVIII) in adults with severe haemophilia A. Haemophilia 2016;22:374-380. - 8. Thornburg CD, Duncan NA. Treatment adherence in hemophilia. Patient Prefer Adherence 2017;11:1677-1686. - 9. Petrini P, Valentino LA, Gringeri A, Re WM, Ewenstein B. Individualizing prophylaxis in hemophilia: a review. Expert Rev Hematol 2015;8:237-246. - 10. Berntorp E, Anderson NG. Prophylaxis for hemophilia in the era of extended half-life factor FVIII/factor IX products. Semin Thromb Hemost 2016;16:518-525. - 11. Barg AA, Livnat T, Kenet G. Inhibitors in hemophilia: treatment challenges and novel options. Semin Thromb Hemost 2018; 44:544-550. - 12. DiMichele D, Rivard G, Hay C, Antunes S. Inhibitors in haemophilia: clinical aspects. Haemophilia 2004;10(suppl 4):140-145. - 13. Kreuz W, Becker S, Lenz E, Martinez-Saguer I, Escuriola-Ettingshausen C, Funk M, et al. Factor VIII inhibitors in patients with hemophilia A: epidemiology of inhibitor development and induction of immune tolerance for Factor VIII. Semin Thromb Hemost 1995;21:382-389. - 14. Peyvandi F, Makris M. Inhibitor development in haemophilia. Haemophilia 2017;23(Suppl 1):3. - 15. Franchini M, Mannucci PM. Non-factor replacement therapy for haemophilia: a current update. Blood Transfus 2018;16:457-461. - Pelland-Marcotte M-C, Carcao MD. Hemophilia in a changing treatment landscape. Hematol Oncol Clin N Am 2019;33:409-423. - 17. Tripodi A, Chantarangkul V, Novembrino C, Peyvandi F. Advances in the treatment of hemophilia: implications for laboratory testing. Clin Chem 2019;65:254-262. - 18. Kitazawa T, Igawa T, Sampei Z, Muto A, Kojima T, Soeda T, et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med 2013;18:1570-1574. - 19. Muto A, Yoshihashi K, Takeda M, Kitazawa T, Soeda T, Igawa T, et al. Anti-factor IXa/X bispecific antibody ACE910 prevents joint bleeds in a long-term primate model of acquired hemophilia A. Blood 2014;124:3165-3171. - 20. Sampei Z, Igawa T, Soeda T, Okuyama-Nishida Y, Moriyama C, Wakabayashi T, et al. Identification and Multidimensional Optimization of an Asymmetric Bispecific IgG Antibody Mimicking the Function of Factor VIII Cofactor Activity. PloS One 2013;8:e57479. - 21. Lenting PJ, Denis CV, Christophe OD. Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: how does it actually compare to factor VIII? Blood 2017;130:2463-2468. - 22. Nogami K, Shima, M. New therapies using nonfactor products for patients with hemophilia and inhibitors. Blood 2019;133:399-406. - 23. Callaghan MU, Sidonio R, Pipe SW. Novel therapeutics for hemophilia and other bleeding disorders. Blood 2018;132:23-30. - 24. Mahlangu K. Emicizumab for the prevention of bleeds in hemophilia A. Expert Opin Biol Ther 2019 Aug;19:753-761. - 25. Lippi G, Favaloro EJ. Emicizumab (ACE910): Clinical background and laboratory assessment of hemophilia A. Advances in Clinical Chemistry 2019;88:151-167. - 26. Oldenburg J, Mahlangu JN, Kim B, Schmitt C, Callaghan MU, Young G, et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med 2017;377:809-818. - 27. Shima M, Hanabusa H, Taki M, Matsushita T, Sato T, Fukutake K, et al. Factor VIII-mimetic function of humanized bispecific antibody in hemophilia A. N Engl J Med 2016;374:2044-2053. - 28. Shima M, Hanbusa H, Taki M, Matsushita T, Sato T, Fukutake K, et al. Long-term safety and efficacy of emicizumab in a phase ½ study in patients with hemophilia A with or without inhibitors. Blood Adv 2017;1:1891-1899. - 29. Food and Drug Administration. HEMLIBRA® (emicizumab-kxswh) injection for subcutaneous use, prescribing information. Initial U.S. approval: 2017. Available at: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplN o=761083. Accessed (12/05/2019). - 30. Paz-Priel I, Chang T, Asikanius E, Chebon S, Emrich T, Fernandez E, et al. Immunogenicity of emicizumab in people with hemophilia A (PwHA): results from the HAVEN 1-4 stdies. Blood 2018;132(Suppl 1):633. (Abstract) - 31. Hartmann R, Feenstra T, Valentino L, Dockal M, Scheiflinger F. In vitro studies show synergistic effects of a procoagulant bispecific antibody and bypassing agents. J Thromb Haemost 2018;16:1580-1591. - 32. Kruse-Jarres R, Callaghan MU, Croteau SE, Callaghan MU, Croteau SE, Jimenez-Yuste V, et al. Surgical experience in two multicenter, open-label phase 3 studies of emicizumab in persons with hemophilia A with inhibitors (HAVEN 1 and HAVEN 2). Blood 2017;130(Suppl 1):S89. (Abstract) - 33. Valentino LA, Mamonov V, Hellmann A, Quon DV, Chybicka A, Schroth P, et al. A randomized comparison of two prophylaxis regimens and a paired comparison of on-demand and prophylaxis treatment in hemophilia A management. J Thromb Haemost 2012;10:359-367. - 34. Potgieter JJ, Damgaard M, Hillarp A. One-stage vs. chromogenic assays in haemophilia A. Eur J Haematol 2015;94(Suppl 77):38-44. - 35. Barrowcliffe TW. Standardization of FVIII & FIX assays. Haemophilia 2003;9(4):397-402. - 36. Kitchen S, Kershaw G and Tiefenbacher S. Recombinant to modified factor VIII amd factor IX chromogenic and one-stage assays issues. Haemophilia 2016;22(Suppl 5):72-77. - 37. Kitchen S, Tiefenbacher S, Gosselin R. Factor activity assays for monitoring extended half-life FVIII and factor IX replacement therapies. Semin Thromb Hemost 2017;43(3):331-337. - 38. Moser KA, Adcock Funk DM. Chromogenic factor VIII activity assay. Am J Hematol 2014;89(7):781-4. - 39. Peyvandi F, Oldenburg J, Friedman KD. A critical appraisal of one-stage and chromogenic assays of factor VIII activity. J Thromb Haemost 2016;14(2):248-61. - 40. Peerschke EI, Castellone DD, Ledford-Kraemer M, Van Cott EM, Meijer P. Laboratory assessment of factor VIII inhibitor titer: the North American Specialized Coagulation Laboratory Association experience. Am J Clin Pathol 2009;131(4):552-8. - 41. Kenshaw G, Favaloro EJ. Laboratory identification of factor inhibitors: an update. Pathology 2012;44(4):293-30.2. - 42. Miller CH, Rice AS, Boylan B, Shapiro AD, Lentz SR, Wicklund BM, et al. Comparison of clot-based, chromogenic and fluorescence assays for measurement of factor VIII inhibitors in the US Hemophilia Inhibitor Research Study. J Thromb Haemost 2013;11(7):1300-9. - 43. Verbruggen B, Novakova I, Wessela H, Boezeman J, van den Berg M, Mauser-Bunschoten E. The Nijmegen modification of the Bethesda assay for factor VIII:C inhibitors: improved specificity and reliability. Thromb Haemost 1995;73(2):247-51. - 44. Favaloro EJ, Verbruggen B and Miller CH. Laboratory testing for factor inhibitors. Haemophilia 2014;20(Suppl 4):94-98. - 45. Kitchen S, Blakemore J, Friedman KD, Hart DP, Ko RH, Perry D, et al. A computer-based model to assess costs associated with the use of factor VIII and factor IX one-stage and chromogenic activity assays. J Thromb Haemost 2016;14(4):757-64. - 46. Uchida N, Sambe T, Yoneyana K, Fukazawa N, Kawanishi T, Kobayashi S, Shima M. A first in-human phase 1 study of ACE910, a novel factor VIII-mimetic bispecific antibody, in healthy subjects. Blood 2016;127:1633-1641. - 47. Ahmad SS, London FS, Walsh PN. Binding studies of the enzyme (factor IXa) with the cofactor (factor VIIIa) in the assembly of factor-X activating complex on the activated platelet surface. J Thromb Haemost 2003;1:2348-2355. - 48. Adamkewicz JI, Chen DC, Paz-Priel I. Effects and interferences of emicizumab, a humanized bispecific antibody mimicking activated factor VIII cofactor function, on coagulation assays. Thromb Haemost 2019;119:1084-1093. - 49. Adamewicz JI, Soeda T, Kotani N, Calatzis A, Levy G. Efffect of emicizumab (ACE910 a humanized bispecific antibody mimicking FVIIIa cofactor function on coagulation assays commonly in use for monitoring hemophilia A patients. Haemophilia 2017;23(Suppl 3):4. (Abstract) - 50. Nogami K, Soeda T, Matsumoto T, Kawabe Y, Kitasawa T, Shima M. Routine measurements of factor VIII activity and inhibitor titer in the presence of emicizumab utilizing anti-idiotype monoclonal antibodies. J Thromb Haemost 2018;16:1383-1390. - 51. Sadeghi-Kohmami A, Boylan M, Chen DC, Adamkewicz J. Agreement between a chromogenic modified Nijmegen-Bethesda assay and a qualitative ELISA test in detection of - factor VIII inhibitors in plasma from persons with hemophilia A (PwHA). Haemophilia 2018;24(Issue S5):46 (Abstract). - 52. Muto A, Yoshihashi K, Takeda M, Kitazawa T, Soeda T, Igawa T, et al. Anti-factor Ixa/X bispecific antibody (ACE910) hemostatic potency against ongoing bleeds in a hemophilia A model and the possibility of routine supplementation. Blood 2014;12:206-213. - 53. Calhoon W, McInerney M, Calatzis A, Chen D, Adamkewicz J, Morris M. Evaluation of a dedicated calibrator and controls for emicizumab quantification. 4th Scientific Meeting of the Thrombosis and Hemostasis Societies of North America (THSNA) April 22-25, 2018; Chicago, IL. (Abstract) - 54. Calatzis A, Chen DC, Paz-Priel I, et al. Effects and interferences of emicizumab a humanized bispecific antibody mimicking activated factor VIII cofactor function on coagulation assays. 62nd Annual Meeting of the Gesellschaft für Thrombose-und Hämoststaseforschung (GTH) February 20-23, 2018; Vienna, Austria. (Abstract) - 55. Jonsson F, Mercier F, Prins NH, Schmitt C, Retout S. Exposure-response modeling of emicizumab for the prophylaxis of bleed counts in hemophilia A patients. 27th Meeting of the Population Approach Group in Europe (PAGE) May 29-June 1, 2018; Montreux, Switzerland. (Abstract) - 56. Nogami K, Matsumoto T, Tabuchi Y, Soeda T, Arai N, Kitazawa T, Shima M. Modified clot waveform analysis to measure plasma coagulation potential in the presence of the anti-factor IXa/Xa bispecific antibody emicizumab. J Thromb Haemost 2018;16:1078-1088 - 57. Ogiwara K, Nogami K, Matsumoto T, Noguchi-Sasaki, M, Soeda T, Matsumoto K, et al. A modified thrombin generation analysis to measure plasma coagulation potency in the - presence of anti-FIXa/Xa bispecific antibody, emizcizumab. Blood 2018;132(Suppl 1):1200 (Abstract) - 58. Suster MA, Maji D, Nayak LV, Jenkins C, Hunter S, Schmaier AH, et al. A novel point-of-care whole blood coagulation assay to monitor emicizumab therapy in patients with hemophilia. Blood 2018;132(Supp1):2475. (Abstract) - 59. Ogiwara K, Horiuchi H, Nogami K, Kitazawa T, Shima M. Assessment of emicizumab-driven clot stability in hemophilia A model. Blood 2018;132(Suppl 1):2478. (Abstract) - 60. Hartert H. Blutgerinnungsstudien mit der Thrombelastographie; einem neuen Untersuchungs verfahren. Lin Worchenschr 1948;36:577-583. - 61. Chitlur M, Young G. Global assays in hemophilia. Seminars in Hematology 2016;53:40-45. - 62. Hoffman M, Dargaud Y. Mechanisms and monitoring of bypassing agent therapy. J Thromb Haemost 2012;10:1478-1485. - 63. Macfarlane RG, Biggs R. A thrombin generation test; the application in haemophilia and thrombocytopenia. J Clin Pathol 1953;6:3-8. - 64. Tripoldi A. Thrombin generation assay an its application in the clinical laboratory. Clin Chem 2016;62:699-707. - 65. Chitlur M, Rivard GE, Lillicrap D, Mann K, Shima M, Young G and on Behalf of the Factor VIII, Factor IX, and Rare Coagulation Disorders Subcommittee of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. Recommendations for performing thromboelastography/thromboelastometry in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost 2014;12:103-106. - 66. Dargaud Y, Wolberg AS, Gray E, Negrier C, Hemker HC, for the Subcommittee on Factor VIII, Factor IX, and Rare Coagulation Disorders. J Thromb Haemost 2017;15:1704-1707. - 67. Sorensen B, Ingerslev J. Whole blood clot formation phenotype in hemophilia A and rare coagulation disorders. Patterns of response to recombinant factor VIIa. J Thromb Haemost 2004;2:102-110. - 68. Young G, Blain R, Nakagawa P, Nugent DJ. Individualization of bypassing agent treatment for haemophilic patients with inhibitors utilizing thromboelasttography. Haemophilia 2006;12:598-604. - 69. Sorensen B, Ingerslev J. Platelet infustion supports recombinant factor VIIa in a patient with severe haemophilia A and inhibitor clinical outcome and laboratory observations. Thromb Haemost 2010;103:1275-1276. - 70. Salvagno GL, Astermark J, Lippi G, Ekman M, Franchini M, Guidi GC, Berntorp E. Thrombin generation assay: a useful routine check-up tool in the management of patients with haemophilia? Haemophilia 2009;15:290-296. - 71. Al Hawaj MA, Martin EJ, Venitz J, Barrett JC, Kuhn JG, Nolte ME, Brophy DF. Monitoring rFVIII prophylaxis dosing using global haemostasis assays. Haemophilia 2013;19:409-414. - 72. Livnat T, Martinowitz U, Zivelin A, Seligsohn U. Effects of factor VIII inhibitors bypassing activity (FEIBA), recombinant factor VIIa or both on thrombin generation in normal and haemophilia A plasma. Haemophilia 2008;14:782-786. - 73. Martinowitz U, Livnat T, Zivelin A, Kenet G. Concomitant infustion of low doss of rFVIIa and FEIBA in haemophilia patients with inhibitors. Haemophilia 2009;15:904-910. - 74. Schmitt C, Adamkewicz JI, Xu J, Chang T, Petry C, Calatzis A, et al. Pharmacokinetics (PK), pharmacodynamics (PD), and PK.PD relationships of emicizumab in persons with hameophilia A (PwHA) with inhibitors from adolescent/child (HAVEN 1) and paediatric (HAVEN 2) phase 3 studies. Haemophilia 2018;24(Suppl 1):27. (Abstract) - 75. Dargaud Y, Lienhart A, Janbain M, LeQuellec S, Enjoltras N, Negrier C. Use of thrombin generation assay to personalize treatment of breakthrough bleeds in a patient with hemophilia and inhibitors receiving prophylaxis with emicizumab. Haemoatologica 2018;103:e181-e183. - 76. Mahlangu J, Oldenburg J, Paz-Priel I, <u>Negrier C</u>, <u>Niggli M</u>, <u>Mancuso ME</u>, et al. Emicizumab prophylaxis in patients who have hemophilia A without inhibitors. N Engl J Med 2018;379:811-822. - 77. Brophy DF, Martin Ej, Kuhn J. Use of global assays to monitor emicizumab prophylactic therapy in patients with haemophilia A with inhibitors. Haemophilia 2019;25:e121-e123. - 78. Kizilocak H, Yukhtman CL, Marquez-Casas E, Lee J, Donkin J, Young G. Management of perioperative hemostasis in a severe hemophilia A patient with inhibitors on emicizumab using global hemostasis assays. Ther Adv Hematol 2019;10:1-9. # Legends Figure 1. Schematic illustrations of cofactor actions of FVIIIa and a bispecific antibody promoting the interaction between FIXa and FX. (A) FVIIIa forms a complex with FIXa and supports the interaction between FIXa and FX through its binding ability to both factors on the phospholipid membrane. (B) A bispecific antibody binding to FIXa and FX would promote the interaction between FIXa and FX and exert FVIII mimetic activity on the phospholipid membrane. Reproduced under the terms of the Creative Commons Attribution license. Sampei Z, Igawa T, Soeda T, Okuyama-Nishida Y, Moriyama C, Wakabayashi T., et al.²⁰ Figure 2. Schematics of FVIII activity assays. (A) One-stage clotting assay. (B) Chromogenic substrate assay. CaCl₂, calcium chloride; CSA, chromogenic substrate assay; FII, factor II (prothrombin); FIX, factor IX; FIXa, activated FIXa; FVIII, factor VIII; factor VIIIa, activated FVIII; FX, factor X; FXa, activated FX; FXI, factor XI; PL, phospholipid; pNA, para-nitroanaline. Figure 3. Normal thromboelastogram (TEG). Reproduced under the terms of STM permission guidelines (2014). Chitlur M, Young G.⁶¹ Figure 4. Typical thrombin generation assay (TGA) with relevant parameters. Reproduced with permission from the American Association for Clinical Chemistry. Tripodi A. ⁶³ Table 1. Effect of emicizumab on clinical coagulation assays. APCR, activated protein C resistance; APTT, activated partial thromboplastin time; FXIII, factor XIII; OSA, one-stage clotting assay; PT, prothrombin time; VWF, von Willebrand factor; Xa, activated factor X Table 2. Comparison of terms for TEG 5000 and ROTEM Figure 1. Figure 2. Figure 3. Figure 4. Table 1. Effect of emicizumab on clinical coagulation assays. | Assays Affected by Emicizumab | Assays Unaffected by Emicizumab | | | |-------------------------------------------|---------------------------------------------|--|--| | APTT | Fibrinogen, according to Clauss | | | | APTT-based APCR assay | Thrombin Time | | | | APTT-based OSA factor assay | PT-based OSA factor assay | | | | APTT-based protein C assay | PT-activator based APCR | | | | APTT-based protein S assay | Bethesda assay (bovine chromogenic) for | | | | Bethesda assay (clotting based) for FVIII | FVIII inhibitor titer | | | | inhibitor titer | Chromogenic assays (e.g., Antithrombin, | | | | PT (weak effect) | Anti-Xa activity, Protein C, Plasminogen) | | | | Fibrinogen, PT-derived (weak effect) | ELISA assays (e.g., Plasminogen antigen, | | | | Activated clotting time (ACT) | Protein S antigen (Free, Total), D-Dimer, | | | | , , | VWF-antigen, VWF-activity, FXIII- | | | | | Antigen) | | | | | Genetic tests for coagulation factors (e.g. | | | | | Factor V Mutation, Prothrombin 20210) | | | Table 2. Comparison of terms for TEG 5000 and ROTEM | TEG 5000 term | ROTEM term | Units | Clot formation property | |--------------------------|----------------------------|-----------------------|-------------------------| | Reaction time (R) | Clotting time (CT) | Seconds/minutes | Clot initiation | | Kinetic time (K) | Clot formation time (CFT) | Seconds/minutes | Clot propagation | | Alpha angle | Alpha angle | Degrees | Clot propagation | | Maximal amplitude (MA) | Maximum clot firmness (MA) | Millimeters | Clot rigidity | | Clot elastic modulus (G) | Shear elastic modulus (G) | Dynes/cm ² | Clot elasticity |