Skip to main content

Advertisement

Log in

Pseudomonas aeruginosa Biofilms in Disease

  • Minireviews
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is a ubiquitous organism that is the focus of intense research because of its prominent role in disease. Due to its relatively large genome and flexible metabolic capabilities, this organism exploits numerous environmental niches. It is an opportunistic pathogen that sets upon the human host when the normal immune defenses are disabled. Its deadliness is most apparent in cystic fibrosis patients, but it also is a major problem in burn wounds, chronic wounds, chronic obstructive pulmonary disorder, surface growth on implanted biomaterials, and within hospital surface and water supplies, where it poses a host of threats to vulnerable patients (Peleg and Hooper, N Engl J Med 362:1804–1813, 2010; Breathnach et al., J Hosp Infect 82:19–24, 2012). Once established in the patient, P. aeruginosa can be especially difficult to treat. The genome encodes a host of resistance genes, including multidrug efflux pumps (Poole, J Mol Microbiol Biotechnol 3:255–264, 2001) and enzymes conferring resistance to beta-lactam and aminoglycoside antibotics (Vahdani et al., Annal Burns Fire Disast 25:78–81, 2012), making therapy against this gram-negative pathogen particularly challenging due to the lack of novel antimicrobial therapeutics (Lewis, Nature 485: 439–440, 2012). This challenge is compounded by the ability of P. aeruginosa to grow in a biofilm, which may enhance its ability to cause infections by protecting bacteria from host defenses and chemotherapy. Here, we review recent studies of P. aeruginosa biofilms with a focus on how this unique mode of growth contributes to its ability to cause recalcitrant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 362(19):1804–1813. doi:10.1056/NEJMra0904124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Breathnach AS, Cubbon MD, Karunaharan RN, Pope CF, Planche TD (2012) Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. The Journal of hospital infection 82(1):19–24. doi:10.1016/j.jhin.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  3. Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3(2):255–264

    CAS  PubMed  Google Scholar 

  4. Vahdani M, Azimi L, Asghari B, Bazmi F, Rastegar Lari A (2012) Phenotypic screening of extended-spectrum ss-lactamase and metallo-ss-lactamase in multidrug-resistant Pseudomonas aeruginosa from infected burns. Annals of burns and fire disasters 25(2):78–81

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Lewis K (2012) Antibiotics: recover the lost art of drug discovery. Nature 485(7399):439–440. doi:10.1038/485439a

    Article  CAS  PubMed  Google Scholar 

  6. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. The Journal of clinical investigation 112(10):1466–1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gristina AG, Costerton JW (1985) Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. The Journal of bone and joint surgery American volume 67(2):264–273

    CAS  PubMed  Google Scholar 

  8. Cross A, Allen JR, Burke J, Ducel G, Harris A, John J, Johnson D, Lew M, MacMillan B, Meers P et al (1983) Nosocomial infections due to Pseudomonas aeruginosa: review of recent trends. Reviews of infectious diseases 5(Suppl 5):S837–S845

    Article  PubMed  Google Scholar 

  9. Peters G, Locci R, Pulverer G (1981) Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl Bakteriol Mikrobiol Hyg [B] 173(5):293–299

    CAS  Google Scholar 

  10. Ganderton L, Chawla J, Winters C, Wimpenny J, Stickler D (1992) Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters. Eur J Clin Microbiol Infect Dis 11(9):789–796

    Article  CAS  PubMed  Google Scholar 

  11. Raad I, Hanna H (1999) Intravascular catheters impregnated with antimicrobial agents: a milestone in the prevention of bloodstream infections [see comments]. Support Care Cancer 7(6):386–390

    Article  CAS  PubMed  Google Scholar 

  12. Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, Webb CH, McCarthy GJ, Milligan KR (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25(10):1072–1076

    Article  CAS  PubMed  Google Scholar 

  13. Vandecandelaere I, Matthijs N, Van Nieuwerburgh F, Deforce D, Vosters P, De Bus L, Nelis HJ, Depuydt P, Coenye T (2012) Assessment of microbial diversity in biofilms recovered from endotracheal tubes using culture dependent and independent approaches. PLoS One 7(6):e38401. doi:10.1371/journal.pone.0038401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Frank DN, Wilson SS, St Amand AL, Pace NR (2009) Culture-independent microbiological analysis of foley urinary catheter biofilms. PLoS One 4(11):e7811. doi:10.1371/journal.pone.0007811

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168(8):918–951

    Article  PubMed  Google Scholar 

  16. Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG (2008) A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci U S A 105(39):15070–15075. doi:10.1073/pnas.0804326105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sibley CD, Parkins MD, Rabin HR, Surette MG (2009) The relevance of the polymicrobial nature of airway infection in the acute and chronic management of patients with cystic fibrosis. Curr Opin Investig Drugs 10(8):787–794

    CAS  PubMed  Google Scholar 

  18. Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, Dowd SE, Parkins MD, Rabin HR, Surette MG (2011) Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 6(7):e22702. doi:10.1371/journal.pone.0022702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Delhaes L, Monchy S, Frealle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabe M, Viscogliosi E (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One 7(4):e36313. doi:10.1371/journal.pone.0036313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA, Lory S, Brodie EL, Lynch SV, Bohannan BJ, Green JL, Maurer BA, Kolter R (2010) Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol 12(5):1293–1303. doi:10.1111/j.1462-2920.2010.02173.x

    Article  CAS  PubMed  Google Scholar 

  21. Rose LM, Neale R (2010) Development of the first inhaled antibiotic for the treatment of cystic fibrosis. Science translational medicine 2(63):63mr64. doi:10.1126/scitranslmed.3001634

    Article  Google Scholar 

  22. Hurley MN, Ariff AH, Bertenshaw C, Bhatt J, Smyth AR (2012) Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis. Journal of cystic fibrosis 11(4):288–292. doi:10.1016/j.jcf.2012.02.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764. doi:10.1038/35037627

    Article  CAS  PubMed  Google Scholar 

  24. Bjarnsholt T, Jensen PO, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Hoiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatric pulmonology 44(6):547–558. doi:10.1002/ppul.21011

    Article  PubMed  Google Scholar 

  25. No authors (1999) Consensus Development Conference on Diabetic Foot Wound Care: 7–8 April 1999, Boston, Massachusetts. American Diabetes Association. Diabetes care 22 (8):1354–1360

  26. James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound repair and regeneration 16(1):37–44. doi:10.1111/j.1524-475X.2007.00321.x

    Article  PubMed  Google Scholar 

  27. Fazli M, Bjarnsholt T, Kirketerp-Moller K, Jorgensen B, Andersen AS, Krogfelt KA, Givskov M, Tolker-Nielsen T (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47(12):4084–4089. doi:10.1128/JCM.01395-09

    Article  PubMed Central  PubMed  Google Scholar 

  28. Burmolle M, Thomsen TR, Fazli M, Dige I, Christensen L, Homoe P, Tvede M, Nyvad B, Tolker-Nielsen T, Givskov M, Moser C, Kirketerp-Moller K, Johansen HK, Hoiby N, Jensen PO, Sorensen SJ, Bjarnsholt T (2010) Biofilms in chronic infections—a matter of opportunity—monospecies biofilms in multispecies infections. FEMS immunology and medical microbiology 59(3):324–336. doi:10.1111/j.1574-695X.2010.00714.x

    PubMed  Google Scholar 

  29. Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44(7):1818–1824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hoyle BD, Alcantara J, Costerton JW (1992) Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother 36(9):2054–2056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nichols WW, Evans MJ, Slack MP, Walmsley HL (1989) The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol 135(5):1291–1303

    CAS  PubMed  Google Scholar 

  32. Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53(3):1204–1209. doi:10.1128/AAC.00471-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40(11):2517–2522

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Lu X, Roe F, Jesaitis A, Lewandowski Z (1998) Resistance of biofilms to the catalase inhibitor 3-amino-1,2,4-triazole. Biotechnol Bioeng 60(1):135. doi:10.1002/(SICI)1097-0290(19981005)60:1<135::AID-BIT15>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  35. Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13(1):34–40. doi:10.1016/j.tim.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  36. Vrany JD, Stewart PS, Suci PA (1997) Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa bofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother 41(6):1352–1358

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Stone G, Wood P, Dixon L, Keyhan M, Matin A (2002) Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob Agents Chemother 46(8):2458–2461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Anderl JN, Zahller J, Roe F, Stewart PS (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47(4):1251–1256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Hoiby N (2004) Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48(4):1168–1174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47(1):317–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K (2013) Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339(6124):1213–1216. doi:10.1126/science.1232688

    Article  CAS  PubMed  Google Scholar 

  42. Purdy Drew KR, Sanders LK, Culumber ZW, Zribi O, Wong GC (2009) Cationic amphiphiles increase activity of aminoglycoside antibiotic tobramycin in the presence of airway polyelectrolytes. J Am Chem Soc 131(2):486–493. doi:10.1021/ja803925n

    Article  CAS  PubMed  Google Scholar 

  43. Chiang WC, Nilsson M, Jensen PO, Hoiby N, Nielsen TE, Givskov M, Tolker-Nielsen T (2013) Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 57(5):2352–2361. doi:10.1128/AAC.00001-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. deBeer D, Stoodley P, Lewandowski Z (1997) Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnology and Bioengineering 53(2):151–158. doi:10.1002/(Sici)1097-0290(19970120)53:2<151::Aid-Bit4>3.0.Co;2-N

    Article  CAS  Google Scholar 

  45. Thurnheer T, Gmur R, Shapiro S, Guggenheim B (2003) Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl Environ Microbiol 69(3):1702–1709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Takenaka S, Pitts B, Trivedi HM, Stewart PS (2009) Diffusion of macromolecules in model oral biofilms. Appl Environ Microbiol 75(6):1750–1753. doi:10.1128/AEM.02279-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Moser C, Kjaergaard S, Pressler T, Kharazmi A, Koch C, Hoiby N (2000) The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. Apmis 108(5):329–335. doi:10.1034/j.1600-0463.2000.d01-64.x

    Article  CAS  PubMed  Google Scholar 

  48. Hartl D, Griese M, Kappler M, Zissel G, Reinhardt D, Rebhan C, Schendel DJ, Krauss-Etschmann S (2006) Pulmonary T(H)2 response in Pseudomonas aeruginosa-infected patients with cystic fibrosis. J Allergy Clin Immunol 117(1):204–211. doi:10.1016/j.jaci.2005.09.023

    Article  CAS  PubMed  Google Scholar 

  49. Moss RB, Hsu YP, Olds L (2000) Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clin Exp Immunol 120(3):518–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Moser C, Johansen HK, Song Z, Hougen HP, Rygaard J, Hoiby N (1997) Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. Apmis 105(11):838–842

    Article  CAS  PubMed  Google Scholar 

  51. Moser C, Hougen HP, Song Z, Rygaard J, Kharazmi A, Hoiby N (1999) Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response. Apmis 107(12):1093–1100

    Article  CAS  PubMed  Google Scholar 

  52. Johansen HK, Hougen HP, Rygaard J, Hoiby N (1996) Interferon-gamma (IFN-gamma) treatment decreases the inflammatory response in chronic Pseudomonas aeruginosa pneumonia in rats. Clin Exp Immunol 103(2):212–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349. doi:10.1056/NEJM200005043421806

    Article  CAS  PubMed  Google Scholar 

  54. Schnyder-Candrian S, Strieter RM, Kunkel SL, Walz A (1995) Interferon-alpha and interferon-gamma down-regulate the production of interleukin-8 and ENA-78 in human monocytes. J Leukoc Biol 57(6):929–935

    CAS  PubMed  Google Scholar 

  55. Jensen PO, Moser C, Kobayashi O, Hougen HP, Kharazmi A, Hoiby N (2004) Faster activation of polymorphonuclear neutrophils in resistant mice during early innate response to Pseudomonas aeruginosa lung infection. Clin Exp Immunol 137(3):478–485. doi:10.1111/j.1365-2249.2004.02554.xCEI2554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Alhede M, Bjarnsholt T, Jensen PO, Phipps RK, Moser C, Christophersen L, Christensen LD, van Gennip M, Parsek M, Hoiby N, Rasmussen TB, Givskov M (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155(Pt 11):3500–3508. doi:10.1099/mic.0.031443-0

    Article  CAS  PubMed  Google Scholar 

  57. Jensen PO, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Hoiby N (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1329–1338. doi:10.1099/mic.0.2006/003863-0

    Article  CAS  PubMed  Google Scholar 

  58. Jensen PO, Givskov M, Bjarnsholt T, Moser C (2010) The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 59(3):292–305. doi:10.1111/j.1574-695X.2010.00706.x

    CAS  PubMed  Google Scholar 

  59. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175(11):7512–7518

    Article  CAS  PubMed  Google Scholar 

  60. Wood LF, Ohman DE (2012) Identification of genes in the sigma(2)(2) regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth. MBio 3 (3). doi:10.1128/mBio.00094-12

  61. Van Gennip M, Christensen LD, Alhede M, Phipps R, Jensen PO, Christophersen L, Pamp SJ, Moser C, Mikkelsen PJ, Koh AY, Tolker-Nielsen T, Pier GB, Hoiby N, Givskov M, Bjarnsholt T (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. Apmis 117(7):537–546. doi:10.1111/j.1600-0463.2009.02466.x

    Article  PubMed  CAS  Google Scholar 

  62. van Gennip M, Christensen LD, Alhede M, Qvortrup K, Jensen PO, Hoiby N, Givskov M, Bjarnsholt T (2012) Interactions between polymorphonuclear leukocytes and Pseudomonas aeruginosa biofilms on silicone implants in vivo. Infect Immun 80(8):2601–2607. doi:10.1128/Iai.06215-11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Kharazmi A (1991) Mechanisms involved in the evasion of the host defense by Pseudomonas aeruginosa. Immunol Lett 30(2):201–206. doi:10.1016/0165-2478(91)90026-7

    Article  CAS  PubMed  Google Scholar 

  64. Wagner VE, Li LL, Isabella VM, Iglewski BH (2007) Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa. Analytical and Bioanalytical Chemistry 387(2):469–479. doi:10.1007/s00216-006-0964-6

    Article  CAS  PubMed  Google Scholar 

  65. Pier GB, Coleman F, Grout M, Franklin M, Ohman DE (2001) Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69(3):1895–1901. doi:10.1128/Iai.69.3.1895-1901.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lewenza S (2013) Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Front Microbiol 4:21. doi:10.3389/fmicb.2013.00021

    Article  PubMed Central  PubMed  Google Scholar 

  67. Moskowitz SM, Ernst RK (2010) The role of Pseudomonas lipopolysaccharide in cystic fibrosis airway infection. Subcell Biochem 53:241–253. doi:10.1007/978-90-481-9078-2_11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Xu KD, McFeters GA, Stewart PS (2000) Biofilm resistance to antimicrobial agents. Microbiology 146(Pt 3):547–549

    Article  CAS  PubMed  Google Scholar 

  69. Evans DJ, Brown MR, Allison DG, Gilbert P (1990) Susceptibility of bacterial biofilms to tobramycin: role of specific growth rate and phase in the division cycle. J Antimicrob Chemother 25(4):585–591

    Article  CAS  PubMed  Google Scholar 

  70. Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132(Pt 5):1297–1304

    CAS  PubMed  Google Scholar 

  71. Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34(10):1865–1868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. NCCLS (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard, 2nd edn. CLSI document M27-A2. NCCLS, Wayne

    Google Scholar 

  73. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37(6):1771–1776

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372. doi:10.1146/annurev.micro.112408.134306

    Article  CAS  PubMed  Google Scholar 

  75. Moskowitz SM, Foster JM, Emerson J, Burns JL (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42(5):1915–1922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Moskowitz SM, Emerson JC, McNamara S, Shell RD, Orenstein DM, Rosenbluth D, Katz MF, Ahrens R, Hornick D, Joseph PM, Gibson RL, Aitken ML, Benton WW, Burns JL (2011) Randomized trial of biofilm testing to select antibiotics for cystic fibrosis airway infection. Pediatric pulmonology 46(2):184–192. doi:10.1002/ppul.21350

    Article  PubMed Central  PubMed  Google Scholar 

  77. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. Journal of bacteriology 183(23):6746–6751. doi:10.1128/JB.183.23.6746-6751.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Palmer RJ Jr, Stoodley P (2007) Biofilms 2007: broadened horizons and new emphases. J Bacteriol 189(22):7948–7960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Current topics in microbiology and immunology 322:107–131

    CAS  PubMed  Google Scholar 

  80. Percival SL, Hill KE, Malic S, Thomas DW, Williams DW (2011) Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms. Wound Repair Regen 19(1):1–9. doi:10.1111/j.1524-475X.2010.00651.x

    Article  PubMed  Google Scholar 

  81. Simoes LC, Lemos M, Pereira AM, Abreu AC, Saavedra MJ, Simoes M (2011) Persister cells in a biofilm treated with a biocide. Biofouling 27(4):403–411. doi:10.1080/08927014.2011.579599

    Article  CAS  PubMed  Google Scholar 

  82. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334(6058):982–986. doi:10.1126/science.1211037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppee JY, Ghigo JM, Beloin C (2013) Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS genetics 9(1):e1003144. doi:10.1371/journal.pgen.1003144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS biology 8(2):e1000317. doi:10.1371/journal.pbio.1000317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Liu Y, Imlay JA (2013) Cell death from antibiotics without the involvement of reactive oxygen species. Science 339(6124):1210–1213. doi:10.1126/science.1232751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Breidenstein EB, de la Fuente-Nunez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19(8):419–426. doi:10.1016/j.tim.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  87. Liao J, Sauer K (2012) The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol 194(18):4823–4836. doi:10.1128/JB.00765-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Liao J, Schurr MJ, Sauer K (2013) The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug-efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol. doi:10.1128/JB.00318-13

    PubMed Central  PubMed  Google Scholar 

  89. Brooun A, Liu S, Lewis K (2000) A dose–response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44(3):640–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210

    Article  CAS  PubMed  Google Scholar 

  91. Sonnleitner E, Abdou L, Haas D (2009) Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106(51):21866–21871. doi:10.1073/pnas.pnas.0910308106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. O’Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182(2):425–431

    Article  PubMed Central  PubMed  Google Scholar 

  93. Linares JF, Moreno R, Fajardo A, Martinez-Solano L, Escalante R, Rojo F, Martinez JL (2010) The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ Microbiol 12(12):3196–3212. doi:10.1111/j.1462-2920.2010.02292.x

    Article  CAS  PubMed  Google Scholar 

  94. Zhang L, Chiang WC, Gao Q, Givskov M, Tolker-Nielsen T, Yang L, Zhang G (2012) The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms. Microbiology 158(Pt 12):3014–3019. doi:10.1099/mic.0.061192-0

    Article  CAS  PubMed  Google Scholar 

  95. Amini S, Hottes AK, Smith LE, Tavazoie S (2011) Fitness landscape of antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS pathogens 7(10):e1002298. doi:10.1371/journal.ppat.1002298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Mena A, Smith EE, Burns JL, Speert DP, Moskowitz SM, Perez JL, Oliver A (2008) Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 190(24):7910–7917. doi:10.1128/JB.01147-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103(22):8487–8492. doi:10.1073/pnas.0602138103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. Journal of bacteriology 192(23):6191–6199. doi:10.1128/JB.01651-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. De Groote VN, Verstraeten N, Fauvart M, Kint CI, Verbeeck AM, Beullens S, Cornelis P, Michiels J (2009) Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS microbiology letters 297(1):73–79. doi:10.1111/j.1574-6968.2009.01657.x

    Article  PubMed  CAS  Google Scholar 

  100. Moker N, Dean CR, Tao J (2010) Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. Journal of bacteriology 192(7):1946–1955. doi:10.1128/JB.01231-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. De Groote VN, Fauvart M, Kint CI, Verstraeten N, Jans A, Cornelis P, Michiels J (2011) Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. J Med Microbiol 60(Pt 3):329–336. doi:10.1099/jmm.0.019703-0

    Article  PubMed  CAS  Google Scholar 

  102. Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proceedings of the National Academy of Sciences of the United States of America 108(32):13206–13211. doi:10.1073/pnas.1100186108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Watters C, DeLeon K, Trivedi U, Griswold JA, Lyte M, Hampel KJ, Wargo MJ, Rumbaugh KP (2013) Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice. Medical microbiology and immunology 202(2):131–141. doi:10.1007/s00430-012-0277-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Gurjala AN, Geringer MR, Seth AK, Hong SJ, Smeltzer MS, Galiano RD, Leung KP, Mustoe TA (2011) Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound repair and regeneration 19(3):400–410. doi:10.1111/j.1524-475X.2011.00690.x

    Article  PubMed  Google Scholar 

  105. Seth AK, Geringer MR, Galiano RD, Leung KP, Mustoe TA, Hong SJ (2012) Quantitative comparison and analysis of species-specific wound biofilm virulence using an in vivo, rabbit-ear model. Journal of the American College of Surgeons 215(3):388–399. doi:10.1016/j.jamcollsurg.2012.05.028

    Article  PubMed  Google Scholar 

  106. Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897):1837–1841. doi:10.1126/science.1163600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Pezzulo AA, Tang XX, Hoegger MJ, Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Banfi B, Horswill AR, Stoltz DA, McCray PB Jr, Welsh MJ, Zabner J (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109–113. doi:10.1038/nature11130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, Raad II, Rijnders BJ, Sherertz RJ, Warren DK (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49(1):1–45. doi:10.1086/599376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Chauhan A, Lebeaux D, Ghigo JM, Beloin C (2012) Full and broad-spectrum in vivo eradication of catheter-associated biofilms using gentamicin-EDTA antibiotic lock therapy. Antimicrob Agents Chemother 56(12):6310–6318. doi:10.1128/AAC.01606-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Wolcott RD, Kennedy JP, Dowd SE (2009) Regular debridement is the main tool for maintaining a healthy wound bed in most chronic wounds. Journal of wound care 18(2):54–56

    Article  CAS  PubMed  Google Scholar 

  111. Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, Watters C, Stewart PS, Dowd SE (2010) Biofilm maturity studies indicate sharp debridement opens a time- dependent therapeutic window. Journal of wound care 19(8):320–328

    Article  CAS  PubMed  Google Scholar 

  112. Dowd SE, Wolcott RD, Kennedy J, Jones C, Cox SB (2011) Molecular diagnostics and personalised medicine in wound care: assessment of outcomes. Journal of wound Care 20(5):232, 234–239

    Article  CAS  PubMed  Google Scholar 

  113. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56

    Article  CAS  PubMed  Google Scholar 

  114. Hoffman LR, Ramsey BW (2013) Cystic fibrosis therapeutics: the road ahead. Chest 143(1):207–213. doi:10.1378/chest.12-1639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. The Journal of clinical investigation 117(4):877–888. doi:10.1172/JCI30783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Miller C, McMullin B, Ghaffari A, Stenzler A, Pick N, Roscoe D, Ghahary A, Road J, Av-Gay Y (2009) Gaseous nitric oxide bactericidal activity retained during intermittent high-dose short duration exposure. Nitric oxide: biology and chemistry 20(1):16–23. doi:10.1016/j.niox.2008.08.002

    Article  CAS  Google Scholar 

  117. Miller C, Miller M, McMullin B, Regev G, Serghides L, Kain K, Road J, Av-Gay Y (2012) A phase I clinical study of inhaled nitric oxide in healthy adults. Journal of cystic fibrosis 11(4):324–331. doi:10.1016/j.jcf.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  118. Davies JC, Wainwright CE, Canny GJ, Chilvers MA, Howenstine MS, Munck A, Mainz JG, Rodriguez S, Li H, Yen K, Ordonez C, Ahrens R (2013) Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. doi:10.1164/rccm.201301-0153OC

    Google Scholar 

  119. Okiyoneda T, Veit G, Dekkers JF, Bagdany M, Soya N, Xu H, Roldan A, Verkman AS, Kurth M, Simon A, Hegedus T, Beekman JM, Lukacs GL (2013) Mechanism-based corrector combination restores DeltaF508-CFTR folding and function. Nat Chem Biol. doi:10.1038/nchembio.1253

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant T-R01AI085585-01 and by Army Research Office grants W9911NF-09-1-0265 and 55631-LS-RIP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulcahy, L.R., Isabella, V.M. & Lewis, K. Pseudomonas aeruginosa Biofilms in Disease. Microb Ecol 68, 1–12 (2014). https://doi.org/10.1007/s00248-013-0297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0297-x

Keywords

Navigation