Skip to main content

Advertisement

Log in

Performance evaluation of the Verigene® (Nanosphere) and FilmArray® (BioFire®) molecular assays for identification of causative organisms in bacterial bloodstream infections

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Molecular assays designed to provide bacterial identification and detection of resistance genes directly from positive blood cultures can significantly reduce the time to definitive results. This has the potential to improve patient management and antimicrobial stewardship. However, the extent of such an impact is yet to be fully assessed. We tested two such assays, the Verigene® System Bloodstream Infection Tests (Nanosphere, Inc., Northbrook, IL, USA) (both Gram-positive and Gram-negative cartridges) and the FilmArray® Blood Culture Identification Panel (BioFire® Diagnostics, Inc., Salt Lake City, UT, USA). We compared their accuracy and speed of organism and resistance gene identification to conventional culture-based methods for 173 positive blood cultures. We also retrospectively determined, for organisms deemed not to be contaminants, the potential impact on antimicrobial prescribing. Both the Verigene® and FilmArray® assays accurately identified organisms, on average, 27.95 and 29.17 h earlier than conventional methods, respectively. There were a significant number of false-positives for Pseudomonas aeruginosa with the FilmArray® assay, which may have been related to contamination of the bioMérieux BacT standard anaerobic blood culture bottles, which the manufacturer has acknowledged. Both panels provided results significantly faster than conventional methods. In our setting, the extent of the potential positive impact on antimicrobial prescribing was modest (9 out of 173 samples). However, this may be an underestimation, since probable contaminants were not included in this analysis. In conclusion, both panels gave accurate results with significantly improved turnaround times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McPherson D, Griffiths C, Williams M, Baker A, Klodawski E, Jacobson B, Donaldson L (2013) Sepsis-associated mortality in England: an analysis of multiple cause of death data from 2001 to 2010. BMJ Open. doi:10.1136/bmjopen-2013-002586

    Google Scholar 

  2. Padkin A, Goldfrad C, Brady AR, Young D, Black N, Rowan K (2003) Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland. Crit Care Med 31:2332–2338

    Article  PubMed  Google Scholar 

  3. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent J-L, Moreno R; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637

    Article  PubMed  Google Scholar 

  4. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596

    Article  PubMed  Google Scholar 

  5. Davies SC (2013) Annual report of the Chief Medical Officer 2011: volume two, 2011. Infections and the rise of antimicrobial resistance. Department of Health, London

  6. Stoneking LR, Patanwala AE, Winkler JP, Fiorello AB, Lee ES, Olson DP, Wolk DM (2013) Would earlier microbe identification alter antibiotic therapy in bacteremic emergency department patients? J Emerg Med 44:1–8

    Article  PubMed  Google Scholar 

  7. Pérez-Vázquez M, Oliver A, Sánchez del Saz B, Loza E, Baquero F, Cantón R (2001) Performance of the VITEK2 system for identification and susceptibility testing of routine Enterobacteriaceae clinical isolates. Int J Antimicrob Agents 17:371–376

    Article  PubMed  Google Scholar 

  8. Fournier P-E, Drancourt M, Colson P, Rolain J-M, La Scola B, Raoult D (2013) Modern clinical microbiology: new challenges and solutions. Nat Rev Microbiol 11:574–585

    Article  CAS  PubMed  Google Scholar 

  9. Peters RPH, van Agtmael MA, Danner SA, Savelkoul PHM, Vandenbroucke-Grauls CMJE (2004) New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 4:751–760

    Article  CAS  PubMed  Google Scholar 

  10. La Scola B (2011) Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert Rev Mol Diagn 11:287–298

    PubMed  Google Scholar 

  11. Chang S-S, Hsieh W-H, Liu TS, Lee S-H, Wang C-H, Chou H-C, Yeo YH, Tseng C-P, Lee C-C (2013) Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis—a systemic review and meta-analysis. PLoS One 8:e62323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Samuel LP, Tibbetts RJ, Agotesku A, Fey M, Hensley R, Meier FA (2013) Evaluation of a microarray-based assay for rapid identification of Gram-positive organisms and resistance markers in positive blood cultures. J Clin Microbiol 51:1188–1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wojewoda CM, Sercia L, Navas M, Tuohy M, Wilson D, Hall GS, Procop GW, Richter SS (2013) Evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants. J Clin Microbiol 51:2072–2076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Buchan BW, Ginocchio CC, Manii R, Cavagnolo R, Pancholi P, Swyers L, Thomson RB Jr, Anderson C, Kaul K, Ledeboer NA (2013) Multiplex identification of gram-positive bacteria and resistance determinants directly from positive blood culture broths: evaluation of an automated microarray-based nucleic acid test. PLoS Med 10:e1001478

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sullivan KV, Turner NN, Roundtree SS, Young S, Brock-Haag CA, Lacey D, Abuzaid S, Blecker-Shelly DL, Doern CD (2013) Rapid detection of Gram-positive organisms by use of the Verigene Gram-positive blood culture nucleic acid test and the BacT/Alert Pediatric FAN system in a multicenter pediatric evaluation. J Clin Microbiol 51:3579–3584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Alby K, Daniels LM, Weber DJ, Miller MB (2013) Development of a treatment algorithm for streptococci and enterococci from positive blood cultures identified with the Verigene Gram-positive blood culture assay. J Clin Microbiol 51:3869–3871

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mestas J, Polanco CM, Felsenstein S, Dien Bard J (2014) Performance of the Verigene Gram-positive blood culture assay for direct detection of Gram-positive organisms and resistance markers in a pediatric hospital. J Clin Microbiol 52:283–287

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mancini N, Infurnari L, Ghidoli N, Valzano G, Clementi N, Burioni R, Clementi M (2014) Potential Impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. J Clin Microbiol 52:1242–1245

    Article  PubMed Central  PubMed  Google Scholar 

  19. Altun O, Almuhayawi M, Ullberg M, Ozenci V (2013) Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol 51:4130–4136

    Article  PubMed Central  PubMed  Google Scholar 

  20. Beal SG, Ciurca J, Smith G, John J, Lee F, Doern CD, Gander RM (2013) Evaluation of the Nanosphere Verigene Gram-positive blood culture assay with the VersaTREK blood culture system and assessment of possible impact on selected patients. J Clin Microbiol 51:3988–3992

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sango A, McCarter YS, Johnson D, Ferreira J, Guzman N, Jankowski CA (2013) Stewardship approach for optimizing antimicrobial therapy through use of a rapid microarray assay on blood cultures positive for Enterococcus species. J Clin Microbiol 51:4008–4011

    Article  PubMed Central  PubMed  Google Scholar 

  22. Scott LJ (2013) Verigene® gram-positive blood culture nucleic acid test. Mol Diagn Ther 17:117–122

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan KV, DeBurger B, Roundtree SS, Ventrola CA, Blecker-Shelly DL, Mortensen JE (2014) Pediatric multicenter evaluation of the Verigene gram-negative blood culture test for rapid detection of inpatient bacteremia involving gram-negative organisms, extended-spectrum beta-lactamases, and carbapenemases. J Clin Microbiol 52:2416–2421. doi:10.1128/JCM.00737-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. McNeil MM, Davis BJ, Anderson RL, Martone WJ, Solomon SL (1985) Mechanism of cross-contamination of blood culture bottles in outbreaks of pseudobacteremia associated with nonsterile blood collection tubes. J Clin Microbiol 22:23–25

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Noskin GA, Suriano T, Collins S, Sesler S, Peterson LR (2001) Paenibacillus macerans pseudobacteremia resulting from contaminated blood culture bottles in a neonatal intensive care unit. Am J Infect Control 29:126–129

    Article  CAS  PubMed  Google Scholar 

  26. Spangler R, Goddard NL, Thaler DS (2009) Optimizing Taq polymerase concentration for improved signal-to-noise in the broad range detection of low abundance bacteria. PLoS One 4:e7010

    Article  PubMed Central  PubMed  Google Scholar 

  27. Blaschke AJ, Heyrend C, Byington CL, Fisher MA, Barker E, Garrone NF, Thatcher SA, Pavia AT, Barney T, Alger GD, Daly JA, Ririe KM, Ota I, Poritz MA (2012) Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn Microbiol Infect Dis 74:349–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

CW reports receiving an educational grant from Nanosphere to attend ECCMID 2014. All other authors report no conflicts of interest relevant to this article.

Financial support

This work was supported by the NIHR Comprehensive Biomedical Research Centre award to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College, London. We are grateful to Una Health, BioFire® Diagnostics, Grifols and Nanosphere for providing consumables and loan of equipment free of charge. The manufacturers took part in neither the study design and execution nor the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Goldenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, C., Stocker, K., Begum, J. et al. Performance evaluation of the Verigene® (Nanosphere) and FilmArray® (BioFire®) molecular assays for identification of causative organisms in bacterial bloodstream infections. Eur J Clin Microbiol Infect Dis 34, 487–496 (2015). https://doi.org/10.1007/s10096-014-2252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2252-2

Keywords

Navigation