Skip to main content
Log in

Role of Exercise-Induced Oxidative Stress in Sickle Cell Trait and Disease

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Sickle cell disease is a class of hemoglobinopathy in humans, which is the most common inherited disease in the world. Although complications of sickle cell disease start from polymerization of red blood cells during its deoxygenating phase, the oxidative stress resulting from the biological processes associated with this disease (ischaemic and hypoxic injuries, hemolysis and inflammation) has been shown to contribute to its pathophysiology. It is widely known that chronic exercise reduces oxidative stress in healthy people, mainly via improvement of antioxidant enzyme efficiency. In addition, recent studies in other diseases, as well as in sickle cell trait carriers and in a mouse model of sickle cell disease, have shown that regular physical activity could decrease oxidative stress. The purpose of this review is to summarize the role of oxidative stress in sickle cell disease and the effects of acute and chronic exercise on the pro-oxidant/antioxidant balance in sickle cell trait and sickle cell disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Khan BV, Harrison DG, Olbrych MT, et al. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA. 1996;93:9114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akinsheye I, Klings ES. Sickle cell anemia and vascular dysfunction: the nitric oxide connection. J Cell Physiol. 2010;224:620–5. doi:10.1002/jcp.22195.

    Article  CAS  PubMed  Google Scholar 

  3. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1005–28.

    CAS  PubMed  Google Scholar 

  4. Chirico EN, Pialoux V. Role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB Life. 2012;64:72–80. doi:10.1002/iub.584.

    Article  CAS  PubMed  Google Scholar 

  5. Nur E, Biemond BJ, Otten H-M, et al. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management. Am J Hematol. 2011;86:484–9. doi:10.1002/ajh.22012.

    Article  CAS  PubMed  Google Scholar 

  6. Alsultan AI, Seif MA, Amin TT, et al. Relationship between oxidative stress, ferritin and insulin resistance in sickle cell disease. Eur Rev Med Pharmacol Sci. 2010;14:527–38.

    CAS  PubMed  Google Scholar 

  7. El-Ghamrawy MK, Hanna WM, Abdel-Salam A, et al. Oxidant-antioxidant status in Egyptian children with sickle cell anemia: a single center based study. J Pediatr (Rio J). 2014;90:286–92. doi:10.1016/j.jped.2013.09.005.

    Article  Google Scholar 

  8. Gizi A, Papassotiriou I, Apostolakou F, et al. Assessment of oxidative stress in patients with sickle cell disease: the glutathione system and the oxidant-antioxidant status. Blood Cells Mol Dis. 2011;46:220–5. doi:10.1016/j.bcmd.2011.01.002.

    Article  CAS  PubMed  Google Scholar 

  9. Manfredini V, Lazzaretti LL, Griebeler IH, et al. Blood antioxidant parameters in sickle cell anemia patients in steady state. J Natl Med Assoc. 2008;100:897–902.

    Article  PubMed  Google Scholar 

  10. Sultana C, Shen Y, Rattan V, et al. Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes. Blood. 1998;92:3924–35.

    CAS  PubMed  Google Scholar 

  11. Torres LS, da Silva DG, Belini Junior E, et al. The influence of hydroxyurea on oxidative stress in sickle cell anemia. Rev Bras Hematol Hemoter. 2012;34:421–5. doi:10.5581/1516-8484.20120106.

    Article  PubMed Central  Google Scholar 

  12. Oztas Y, Durukan I, Unal S, et al. Plasma protein oxidation is correlated positively with plasma iron levels and negatively with hemolysate zinc levels in sickle-cell anemia patients. Int J Lab Hematol. 2012;34:129–35. doi:10.1111/j.1751-553X.2011.01369.x.

    Article  CAS  PubMed  Google Scholar 

  13. Aslan M, Thornley-Brown D, Freeman BA. Reactive species in sickle cell disease. Ann N Y Acad Sci. 2000;899:375–91.

    Article  CAS  PubMed  Google Scholar 

  14. Das SK, Nair RC. Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes. Br J Haematol. 1980;44:87–92.

    Article  CAS  PubMed  Google Scholar 

  15. Morris CR. Mechanisms of vasculopathy in sickle cell disease and thalassemia. Hematol Am Soc Hematol Educ Program. 2008;1:177–83. doi:10.1182/asheducation-2008.1.177.

  16. Natta CL, Chen LC, Chow CK. Selenium and glutathione peroxidase levels in sickle cell anemia. Acta Haematol. 1990;83:130–2.

    Article  CAS  PubMed  Google Scholar 

  17. Fasola F, Adedapo K, Anetor J, et al. Total antioxidants status and some hematological values in sickle cell disease patients in steady state. J Natl Med Assoc. 2007;99:891–4.

    PubMed  PubMed Central  Google Scholar 

  18. Dasgupta T, Hebbel RP, Kaul DK. Protective effect of arginine on oxidative stress in transgenic sickle mouse models. Free Radic Biol Med. 2006;41:1771–80. doi:10.1016/j.freeradbiomed.2006.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schacter L, Warth JA, Gordon EM, et al. Altered amount and activity of superoxide dismutase in sickle cell anemia. FASEB J. 1988;2:237–43.

    CAS  PubMed  Google Scholar 

  20. Amer J, Ghoti H, Rachmilewitz E, et al. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol. 2006;132:108–13. doi:10.1111/j.1365-2141.2005.05834.x.

    Article  CAS  PubMed  Google Scholar 

  21. Goswami K, Ray D. Putative pathogenic effect of oxidative stress in sickle cell disorder. Biomed Res. 2011;22:23–7.

    CAS  Google Scholar 

  22. Palazzetti S, Richard M-J, Favier A, et al. Overloaded training increases exercise-induced oxidative stress and damage. Can J Appl Physiol. 2003;28:588–604.

    Article  CAS  PubMed  Google Scholar 

  23. Belini Junior E, da Silva DG, Torres LS, et al. Oxidative stress and antioxidant capacity in sickle cell anaemia patients receiving different treatments and medications for different periods of time. Ann Hematol. 2012;91:479–89. doi:10.1007/s00277-011-1340-y.

    Article  PubMed  CAS  Google Scholar 

  24. Conran N, Franco-Penteado CF, Costa FF. Newer aspects of the pathophysiology of sickle cell disease vaso-occlusion. Hemoglobin. 2009;33:1–16. doi:10.1080/03630260802625709.

    Article  CAS  PubMed  Google Scholar 

  25. Wood KC, Hsu LL, Gladwin MT. Sickle cell disease vasculopathy: a state of nitric oxide resistance. Free Radic Biol Med. 2008;44:1506–28. doi:10.1016/j.freeradbiomed.2008.01.008.

    Article  CAS  PubMed  Google Scholar 

  26. Hebbel RP, Morgan WT, Eaton JW, et al. Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci USA. 1988;85:237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sheng K, Shariff M, Hebbel RP. Comparative oxidation of hemoglobins A and S. Blood. 1998;91:3467–70.

    CAS  PubMed  Google Scholar 

  28. Hierso R, Waltz X, Mora P, et al. Effects of oxidative stress on red blood cell rheology in sickle cell patients. Br J Haematol. 2014;166:601–6. doi:10.1111/bjh.12912.

    Article  CAS  PubMed  Google Scholar 

  29. Belcher JD, Beckman JD, Balla G, et al. Heme degradation and vascular injury. Antioxid Redox Signal. 2010;12:233–48. doi:10.1089/ars.2009.2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kato GJ. Haptoglobin halts hemoglobin’s havoc. J Clin Invest. 2009;119:2140–2. doi:10.1172/JCI40258.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Muller-Eberhard U, Javid J, Liem HH, et al. Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood. 1968;32:811–5.

    CAS  PubMed  Google Scholar 

  32. Barodka VM, Nagababu E, Mohanty JG, et al. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease. Blood Cells Mol Dis. 2014;52:230–5. doi:10.1016/j.bcmd.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  33. Nagababu E, Gulyani S, Earley CJ, et al. Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic Res. 2008;42:824–9. doi:10.1080/10715760802459879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2008;10:1713–65. doi:10.1089/ars.2008.2027.

    Article  CAS  PubMed  Google Scholar 

  35. Grau M, Mozar A, Charlot K, et al. High red blood cell nitric oxide synthase activation is not associated with improved vascular function and red blood cell deformability in sickle cell anaemia. Br J Haematol. 2015;168:728–36. doi:10.1111/bjh.13185.

    Article  CAS  PubMed  Google Scholar 

  36. Reiter CD, Gladwin MT. An emerging role for nitric oxide in sickle cell disease vascular homeostasis and therapy. Curr Opin Hematol. 2003;10:99–107.

    Article  CAS  PubMed  Google Scholar 

  37. Morris CR, Kuypers FA, Larkin S, et al. Arginine therapy: a novel strategy to induce nitric oxide production in sickle cell disease. Br J Haematol. 2000;111:498–500.

    Article  CAS  PubMed  Google Scholar 

  38. Jeffers A, Gladwin MT, Kim-Shapiro DB. Computation of plasma hemoglobin nitric oxide scavenging in hemolytic anemias. Free Radic Biol Med. 2006;41:1557–65. doi:10.1016/j.freeradbiomed.2006.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morris CR, Kato GJ, Poljakovic M, et al. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA. 2005;294:81–90. doi:10.1001/jama.294.1.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gladwin MT, Schechter AN, Ognibene FP, et al. Divergent nitric oxide bioavailability in men and women with sickle cell disease. Circulation. 2003;107:271–8.

    Article  CAS  PubMed  Google Scholar 

  41. Wood KC, Hebbel RP, Lefer DJ, et al. Critical role of endothelial cell-derived nitric oxide synthase in sickle cell disease-induced microvascular dysfunction. Free Radic Biol Med. 2006;40:1443–53. doi:10.1016/j.freeradbiomed.2005.12.015.

    Article  CAS  PubMed  Google Scholar 

  42. Vilas-Boas W, Cerqueira BAV, Zanette AMD, et al. Arginase levels and their association with Th17-related cytokines, soluble adhesion molecules (sICAM-1 and sVCAM-1) and hemolysis markers among steady-state sickle cell anemia patients. Ann Hematol. 2010;89:877–82. doi:10.1007/s00277-010-0954-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaul DK, Zhang X, Dasgupta T, et al. Arginine therapy of transgenic-knockout sickle mice improves microvascular function by reducing non-nitric oxide vasodilators, hemolysis, and oxidative stress. Am J Physiol Heart Circ Physiol. 2008;295:H39–47. doi:10.1152/ajpheart.00162.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cosentino F, Hürlimann D, Delli Gatti C, et al. Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart. 2008;94:487–92. doi:10.1136/hrt.2007.122184.

    Article  CAS  PubMed  Google Scholar 

  45. Uzunova VV, Pan W, Galkin O, et al. Free heme and the polymerization of sickle cell hemoglobin. Biophys J. 2010;99:1976–85. doi:10.1016/j.bpj.2010.07.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bunn HF, Noguchi CT, Hofrichter J, et al. Molecular and cellular pathogenesis of hemoglobin SC disease. Proc Natl Acad Sci USA. 1982;79:7527–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Szocs K. Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and nitrate tolerance. Gen Physiol Biophys. 2004;23:265–95.

    CAS  PubMed  Google Scholar 

  48. Osarogiagbon UR, Choong S, Belcher JD, et al. Reperfusion injury pathophysiology in sickle transgenic mice. Blood. 2000;96:314–20.

    CAS  PubMed  Google Scholar 

  49. Mahaseth H, Vercellotti GM, Welch TE, et al. Polynitroxyl albumin inhibits inflammation and vasoocclusion in transgenic sickle mice. J Lab Clin Med. 2005;145:204–11.

    Article  CAS  PubMed  Google Scholar 

  50. Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol. 1995;79:675–86.

    CAS  PubMed  Google Scholar 

  51. Leeuwenburgh C, Heinecke JW. Oxidative stress and antioxidants in exercise. Curr Med Chem. 2001;8:829–38.

    Article  CAS  PubMed  Google Scholar 

  52. Gomes EC, Silva AN, de Oliveira MR. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev. 2012;2012:756132. doi:10.1155/2012/756132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Davies KJ, Quintanilha AT, Brooks GA, et al. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107:1198–205.

    Article  CAS  PubMed  Google Scholar 

  54. Ashton T, Rowlands CC, Jones E, et al. Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol Occup Physiol. 1998;77:498–502.

    Article  CAS  PubMed  Google Scholar 

  55. Faes C, Martin C, Chirico EN, et al. Effect of sickle cell trait and/or alpha thalassemia on exercise-induced oxidative stress. Acta Physiol. 2012;205:541–50.

  56. Bailey DM, Young IS, McEneny J, et al. Regulation of free radical outflow from an isolated muscle bed in exercising humans. Am J Physiol Heart Circ Physiol. 2004;287:H1689–99. doi:10.1152/ajpheart.00148.2004.

    Article  CAS  PubMed  Google Scholar 

  57. Dillard CJ, Litov RE, Savin WM, et al. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol. 1978;45:927–32.

    CAS  PubMed  Google Scholar 

  58. Jackson MJ, Edwards RH, Symons MC. Electron spin resonance studies of intact mammalian skeletal muscle. Biochim Biophys Acta. 1985;847:185–90.

    Article  CAS  PubMed  Google Scholar 

  59. Groussard C, Rannou-Bekono F, Machefer G, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol. 2003;89:14–20. doi:10.1007/s00421-002-0767-1.

    Article  CAS  PubMed  Google Scholar 

  60. Goto C, Higashi Y, Kimura M, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108:530–5. doi:10.1161/01.CIR.0000080893.55729.28.

    Article  PubMed  Google Scholar 

  61. Goto C, Nishioka K, Umemura T, et al. Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans. Am J Hypertens. 2007;20:825–30. doi:10.1016/j.amjhyper.2007.02.014.

    Article  CAS  PubMed  Google Scholar 

  62. Bloomer RJ, Davis PG, Consitt LA, et al. Plasma protein carbonyl response to increasing exercise duration in aerobically trained men and women. Int J Sports Med. 2007;28:21–5. doi:10.1055/s-2006-924140.

    Article  CAS  PubMed  Google Scholar 

  63. Fatouros IG, Jamurtas AZ, Villiotou V, et al. Oxidative stress responses in older men during endurance training and detraining. Med Sci Sports Exerc. 2004;36:2065–72.

    Article  CAS  PubMed  Google Scholar 

  64. Robertson JD, Maughan RJ, Duthie GG, et al. Increased blood antioxidant systems of runners in response to training load. Clin Sci. 1991;80:611–8.

    Article  CAS  PubMed  Google Scholar 

  65. Pialoux V, Brown AD, Leigh R, et al. Effect of cardiorespiratory fitness on vascular regulation and oxidative stress in postmenopausal women. Hypertension. 2009;54:1014–20. doi:10.1161/HYPERTENSIONAHA.109.138917.

    Article  CAS  PubMed  Google Scholar 

  66. Steinberg JG, Delliaux S, Jammes Y. Reliability of different blood indices to explore the oxidative stress in response to maximal cycling and static exercises. Clin Physiol Funct Imaging. 2006;26:106–12. doi:10.1111/j.1475-097X.2006.00658.x.

    Article  CAS  PubMed  Google Scholar 

  67. Watson TA, Callister R, Taylor RD, et al. Antioxidant restriction and oxidative stress in short-duration exhaustive exercise. Med Sci Sports Exerc. 2005;37:63–71.

    Article  CAS  PubMed  Google Scholar 

  68. Michailidis Y, Jamurtas AZ, Nikolaidis MG, et al. Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med Sci Sports Exerc. 2007;39:1107–13. doi:10.1249/01.mss.0b013e318053e7ba.

    Article  CAS  PubMed  Google Scholar 

  69. Alessio HM, Hagerman AE, Fulkerson BK, et al. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32:1576–81.

    Article  CAS  PubMed  Google Scholar 

  70. Bloomer RJ, Fisher-Wellman KH. Blood oxidative stress biomarkers: influence of sex, exercise training status, and dietary intake. Gend Med. 2008;5:218–28. doi:10.1016/j.genm.2008.07.002.

    Article  PubMed  Google Scholar 

  71. Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44:153–9. doi:10.1016/j.freeradbiomed.2007.01.029.

    Article  CAS  PubMed  Google Scholar 

  72. Miyazaki H, Oh-ishi S, Ookawara T, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001;84:1–6.

    Article  CAS  PubMed  Google Scholar 

  73. Liu J, Yeo HC, Övervik-Douki E, et al. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol. 2000;89:21–8.

    CAS  PubMed  Google Scholar 

  74. Leeuwenburgh C, Fiebig R, Chandwaney R, et al. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Physiol. 1994;267:R439–45.

    CAS  PubMed  Google Scholar 

  75. Powers SK, Criswell D, Lawler J, et al. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol. 1994;266:R375–80.

    CAS  PubMed  Google Scholar 

  76. Oh-ishi S, Kizaki T, Nagasawa J, et al. Effects of endurance training on superoxide dismutase activity, content and mRNA expression in rat muscle. Clin Exp Pharmacol Physiol. 1997;24:326–32.

    Article  CAS  PubMed  Google Scholar 

  77. Laughlin MH, Simpson T, Sexton WL, et al. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol. 1990;68:2337–43.

    CAS  PubMed  Google Scholar 

  78. Ji LL. Exercise and oxidative stress: role of the cellular antioxidant systems. Exerc Sport Sci Rev. 1995;23:135–66.

    Article  CAS  PubMed  Google Scholar 

  79. Leeuwenburgh C, Ji LL. Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation. Arch Biochem Biophys. 1995;316:941–9. doi:10.1006/abbi.1995.1125.

    Article  CAS  PubMed  Google Scholar 

  80. Aikawa KM, Quintanilha AT, de Lumen BO, et al. Exercise endurance-training alters vitamin E tissue levels and red-blood-cell hemolysis in rodents. Biosci Rep. 1984;4:253–7.

    Article  CAS  PubMed  Google Scholar 

  81. Paik I-Y, Jeong M-H, Jin H-E, et al. Fluid replacement following dehydration reduces oxidative stress during recovery. Biochem Biophys Res Commun. 2009;383:103–7. doi:10.1016/j.bbrc.2009.03.135.

    Article  CAS  PubMed  Google Scholar 

  82. Hillman AR, Vince RV, Taylor L, et al. Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress. Appl Physiol Nutr Metab. 2011;36:698–706. doi:10.1139/h11-080.

    Article  CAS  PubMed  Google Scholar 

  83. Kellum JA, Song M, Li J. Science review: extracellular acidosis and the immune response: clinical and physiologic implications. Crit Care. 2004;8:331–6. doi:10.1186/cc2900.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pialoux V, Mounier R, Brown AD, et al. Relationship between oxidative stress and HIF-1 alpha mRNA during sustained hypoxia in humans. Free Radic Biol Med. 2009;46:321–6. doi:10.1016/j.freeradbiomed.2008.10.047.

    Article  CAS  PubMed  Google Scholar 

  85. Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med. 2011;51:942–50. doi:10.1016/j.freeradbiomed.2010.12.009.

    Article  CAS  PubMed  Google Scholar 

  86. Newcomer SC, Thijssen DHJ, Green DJ. Effects of exercise on endothelium and endothelium/smooth muscle cross talk: role of exercise-induced hemodynamics. J Appl Physiol. 2011;111:311–20. doi:10.1152/japplphysiol.00033.2011.

    Article  CAS  PubMed  Google Scholar 

  87. Connes P, Machado R, Hue O, et al. Exercise limitation, exercise testing and exercise recommendations in sickle cell anemia. Clin Hemorheol Microcirc. 2011;49:151–63. doi:10.3233/CH-2011-1465.

    PubMed  Google Scholar 

  88. Le Gallais D, Lonsdorfer J, Bogui P, et al. Point:counterpoint: sickle cell trait should/should not be considered asymptomatic and as a benign condition during physical activity. J Appl Physiol. 2007;103:2137–8. doi:10.1152/japplphysiol.00338.2007.

    Article  PubMed  Google Scholar 

  89. Connes P, Hardy-Dessources M-D, Hue O. Counterpoint: sickle cell trait should not be considered asymptomatic and as a benign condition during physical activity. J Appl Physiol. 2007;103:2138–40. doi:10.1152/japplphysiol.00338.2007a.

    Article  PubMed  Google Scholar 

  90. Kark JA, Ward FT. Exercise and hemoglobin S. Semin Hematol. 1994;31:181–225.

    CAS  PubMed  Google Scholar 

  91. Connes P, Harmon KG, Bergeron MF. Pathophysiology of exertional death associated with sickle cell trait: can we make a parallel with vaso-occlusion mechanisms in sickle cell disease? Br J Sports Med. 2013;47:190. doi:10.1136/bjsports-2012-091223.

    Article  PubMed  Google Scholar 

  92. Eichner ER. Sickle cell trait in sports. Curr Sports Med Rep. 2010;9:347–51. doi:10.1249/JSR.0b013e3181fc73d7.

    Article  PubMed  Google Scholar 

  93. Kark JA, Posey DM, Schumacher HR, et al. Sickle-cell trait as a risk factor for sudden death in physical training. N Engl J Med. 1987;317:781–7. doi:10.1056/NEJM198709243171301.

    Article  CAS  PubMed  Google Scholar 

  94. Kerle KK, Nishimura KD. Exertional collapse and sudden death associated with sickle cell trait. Mil Med. 1996;161:766–7.

    CAS  PubMed  Google Scholar 

  95. Ferster K, Eichner ER. Exertional sickling deaths in Army recruits with sickle cell trait. Mil Med. 2012;177:56–9.

    Article  PubMed  Google Scholar 

  96. Harmon KG, Drezner JA, Klossner D, et al. Sickle cell trait associated with a RR of death of 37 times in National Collegiate Athletic Association football athletes: a database with 2 million athlete-years as the denominator. Br J Sports Med. 2012;46:325–30. doi:10.1136/bjsports-2011-090896.

    Article  PubMed  Google Scholar 

  97. Kuypers FA, Marsh AM. Research in athletes with sickle cell trait: just do it. J Appl Physiol. 2012;112:1433. doi:10.1152/japplphysiol.00221.2012.

    Article  PubMed  Google Scholar 

  98. Hebbel RP, Eaton JW, Balasingam M, et al. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest. 1982;70:1253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Connes P, Reid H, Hardy-Dessources M-D, et al. Physiological responses of sickle cell trait carriers during exercise. Sports Med. 2008;38:931–46.

    Article  PubMed  Google Scholar 

  100. Tripette J, Connes P, Beltan E, et al. Red blood cell deformability and aggregation, cell adhesion molecules, oxidative stress and nitric oxide markers after a short term, submaximal, exercise in sickle cell trait carriers. Clin Hemorheol Microcirc. 2010;45:39–52. doi:10.3233/CH-2010-1325.

    CAS  PubMed  Google Scholar 

  101. Das SK, Hinds JE, Hardy RE, et al. Effects of physical stress on peroxide scavengers in normal and sickle cell trait erythrocytes. Free Radic Biol Med. 1993;14:139–47.

    Article  CAS  PubMed  Google Scholar 

  102. Faës C, Martin C, Chirico EN, et al. Effect of α-thalassaemia on exercise-induced oxidative stress in sickle cell trait. Acta Physiol (Oxf). 2012;205:541–50. doi:10.1111/j.1748-1716.2012.02434.x.

    Article  CAS  Google Scholar 

  103. Sen CK. Antioxidants in exercise nutrition. Sports Med. 2001;31:891–908.

    Article  CAS  PubMed  Google Scholar 

  104. Bloomer RJ. Effect of exercise on oxidative stress biomarkers. Adv Clin Chem. 2008;46:1–50.

    Article  CAS  PubMed  Google Scholar 

  105. Pialoux V, Mounier R, Ponsot E, et al. Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. Eur J Clin Nutr. 2006;60:1345–54. doi:10.1038/sj.ejcn.1602462.

    Article  CAS  PubMed  Google Scholar 

  106. Aufradet E, Monchanin G, Oyonno-Engelle S, et al. Habitual physical activity and endothelial activation in sickle cell trait carriers. Med Sci Sports Exerc. 2010;42:1987–94. doi:10.1249/MSS.0b013e3181e054d6.

    Article  CAS  PubMed  Google Scholar 

  107. Vincent L, Oyono-Enguéllé S, Féasson L, et al. Effects of regular physical activity on skeletal muscle structural, energetic, and microvascular properties in carriers of sickle cell trait. J Appl Physiol. 2012;113:549–56. doi:10.1152/japplphysiol.01573.2011.

    Article  PubMed  Google Scholar 

  108. Chirico EN, Martin C, Faës C, et al. Exercise training blunts oxidative stress in sickle cell trait carriers. J Appl Physiol. 2012;112:1445–53. doi:10.1152/japplphysiol.01452.2011.

    Article  CAS  PubMed  Google Scholar 

  109. Moheeb H, Wali YA, El-Sayed MS. Physical fitness indices and anthropometrics profiles in schoolchildren with sickle cell trait/disease. Am J Hematol. 2007;82:91–7. doi:10.1002/ajh.20755.

    Article  PubMed  Google Scholar 

  110. Barbeau P, Woods KF, Ramsey LT, et al. Exercise in sickle cell anemia: effect on inflammatory and vasoactive mediators. Endothelium. 2001;8:147–55.

    Article  CAS  PubMed  Google Scholar 

  111. Faës C, Balayssac-Siransy E, Connes P, et al. Moderate endurance exercise in patients with sickle cell anaemia: effects on oxidative stress and endothelial activation. Br J Haematol. 2014;164:124–30. doi:10.1111/bjh.12594.

    Article  PubMed  CAS  Google Scholar 

  112. Balayssac-Siransy E, Connes P, Tuo N, et al. Mild haemorheological changes induced by a moderate endurance exercise in patients with sickle cell anaemia. Br J Haematol. 2011;154:398–407. doi:10.1111/j.1365-2141.2011.08728.x.

    Article  PubMed  Google Scholar 

  113. Waltz X, Hedreville M, Sinnapah S, et al. Delayed beneficial effect of acute exercise on red blood cell aggregate strength in patients with sickle cell anemia. Clin Hemorheol Microcirc. 2012;52(1):15–26. doi:10.3233/CH-2012-1540.

    CAS  PubMed  Google Scholar 

  114. Aufradet E, Douillard A, Charrin E, et al. Physical activity limits pulmonary endothelial activation in sickle cell SAD mice. Blood. 2014;123:2745–7. doi:10.1182/blood-2013-10-534982.

    Article  CAS  PubMed  Google Scholar 

  115. Charrin E, Aufradet E, Douillard A, et al. Oxidative stress is decreased in physically active sickle cell SAD mice. Br J Haematol. 2015;168:747–56. doi:10.1111/bjh.13207.

    Article  CAS  PubMed  Google Scholar 

  116. Cocks M, Shaw CS, Shepherd SO, et al. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol (Lond). 2013;591:641–56. doi:10.1113/jphysiol.2012.239566.

    Article  CAS  PubMed Central  Google Scholar 

  117. Covas M-I, Elosua R, Fitó M, et al. Relationship between physical activity and oxidative stress biomarkers in women. Med Sci Sports Exerc. 2002;34:814–9.

    Article  CAS  PubMed  Google Scholar 

  118. Alcorn R, Bowser B, Henley EJ, et al. Fluidotherapy and exercise in the management of sickle cell anemia: a clinical report. Phys Ther. 1984;64:1520–2.

    CAS  PubMed  Google Scholar 

  119. Tinti G, Somera R Jr, Valente FM, et al. Benefits of kinesiotherapy and aquatic rehabilitation on sickle cell anemia: a case report. Genet Mol Res. 2010;9:360–4. doi:10.4238/vol9-1gmr722.

    Article  CAS  PubMed  Google Scholar 

  120. Zanoni CT, Galvão F, Cliquet Junior A, et al. Pilot randomized controlled trial to evaluate the effect of aquatic and land physical therapy on musculoskeletal dysfunction of sickle cell disease patients. Rev Bras Hematol Hemoter. 2015;37:82–9. doi:10.1016/j.bjhh.2014.11.010.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Pialoux.

Ethics declarations

Conflicts of interest

Erica Chirico, Camille Faës, Philippe Connes, Emmanuelle Canet-Soulas, Cyril Martin and Vincent Pialoux declare that they have no conflicts of interest that are relevant to the content of this review.

Funding

No sources of funding were used in the preparation of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirico, E.N., Faës, C., Connes, P. et al. Role of Exercise-Induced Oxidative Stress in Sickle Cell Trait and Disease. Sports Med 46, 629–639 (2016). https://doi.org/10.1007/s40279-015-0447-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-015-0447-z

Keywords

Navigation