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Throughout the course of a research study that involves data, 
there are many opportunities for making errors. Poor survey 
construction, data collection methods that introduce bias, 
misuse of statistical analysis procedures, and misinterpreta-
tion of results can all lead to drawing incorrect conclusions. 
Researchers who are producing reports need to be able to 
collect and interpret data accurately, and clinical practitioners 
who are reading reports need to be able to assess the statistical 
content of such reports. While the technology of today makes 
it relatively easy to produce numerical summaries of data sets, 
the interpretation of the output still requires some careful 
thought. Correct interpretation of inferential procedures will 
be the focus of this article, and common misinterpretations 
will be described.

CONFIDENCE INTERVALS
One of the most commonly used inferential tools is the 
confidence interval. A confidence interval is used to estimate 

a parameter of interest and is of the form:
estimate ± margin of error.

An example of a fairly standard interpretation of a confidence 
interval might be the following: “We are 95% confident that 
the true mean age is between 25 and 35 years old.” Here 95% 
tells us how confident we are in the process of constructing the 
confidence interval. If we were to randomly select samples of a 
particular size over and over again and construct a confidence 
interval for each one in this same manner, in the long run 
approximately 95% of the intervals would contain the true 
value that we are trying to estimate.

Example:
All articles published in Clinical Chemistry over a 
six month period from January 2000 that contained 
data in the abstract were checked against the cor-
responding data reported in the article, including 
tables and figures. Data inconsistencies were clas-
sified as either data in the abstract being different 
from the data presented in the body of the article 
or the absence from the article of data presented in 
the abstract.

Of 87 articles, 20 articles (23%; 95% confidence 
interval, 11%–35%) contained data in the abstract 
that were inconsistent with those reported in, or 
absent from the article.1

If we regard these 87 articles as a random sample of all articles 
in this journal containing data in the abstract, then the 95% 
confidence associated with the interval from 11% to 35% 
refers to the long-term ‘chances’ of many so-calculated inter-
vals including the true proportion of all articles containing 
data inconsistencies with their abstracts.

We cannot make a probability statement about this particular 
interval that we have created. The ends of the interval are 
constants—they are fixed. Hence, either the population pro-
portion (or other parameter of interest) is in the interval or 
it isn’t. The level of confidence is based upon the confidence 
we have in the process that created the interval, not in the 
specific interval generated by a particular data set. Consider 
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an analogy: we flip a ‘fair’ coin, catch it, and note which side 
is showing. Someone (who hasn’t seen the coin) declares, “I 
am 50% confident that ‘heads’ is showing.” This is a correct 
interpretation of confidence—on this particular toss, he is 
either 100% right or 100% wrong, but if the coin is ‘fair’ 
and if he continues expressing his confidence in the outcome 
‘heads’, the long-term proportion of correct guesses will get 
very close to the ‘true’ value of 0.5 (50%).

Interpretation of p-values
Another commonly used procedure in statistical inference is 
the significance test or test of hypothesis. We generally state 
two hypotheses: a null hypothesis and an alternative hypoth-
esis. The null hypothesis is the status-quo hypothesis or the 
hypothesis of no difference, while the alternative hypothesis is 
the research hypothesis. A small p-value in a test of hypothesis 
indicates that a difference has been detected. A p-value is the 
probability that we would get the statistic that we computed 
using our data, or something more ‘extreme’ that is supportive 
of the alternative hypothesis, if the null hypothesis were really 
true. Thus, a low p-value indicates that the data we have is 
not very believable if the null were really true. In statistics, we 
‘bet’ on what is more likely; hence, if the data do not match 
the assumption of the null, then we bet that the alternative is 
more likely to be the truth. One common misinterpretation 
is to say that the p-value is the probability that the null is true, 
but this is not equivalent to the definition.

Example:
Sodium values from capillary blood analyzed with 
the PCBA were higher (p <0.05) than those from 
venous plasma analyzed with the CX5 as shown in 
Table 2 [of the original article]. Venous samples did 
not differ between methods. No outliers were iden-
tified, and the calculated TE for both comparisons 
were well within CLIA’s EA of 4.0 mmol/L.2

The authors’ statement means that if there were no difference 
between sodium as determined by the portable clinical blood 
analyzer (PCBA) and by the CX5 Chemistry Analyzer, and if 
many such samples were done and summary statistics calculated, 
the difference observed in their sample would happen in less 
than 5% of all samples. In simpler language, if there were no 
difference, what they actually saw wouldn’t happen very often. 
As an analyst, we may conclude one of two things happened: 
choice one, there is no difference, and one of those ‘rare things’ 
happened; or two, there is a difference. Statisticians opt for 
concluding ‘rare things don’t happen very often’, and declare 
the difference ‘statistically significant’.

Note that while a smaller p-value is more significant, this only 
tells us that we are more certain that a difference (from the 
null value) exists. The size of the p-value is not indicative of 
the magnitude of the difference. In many cases, a confidence 
interval may be more informative than the corresponding 
test of hypothesis.

Even if the p-value is small enough to be considered signifi-
cant, this does not necessarily mean that the difference really 
means anything. One thing to consider is that a large sample 
may allow you to detect a small difference. While the p-value 
may indicate that a difference exists, that difference may be so 
small that it does not really matter in practical terms. Again, 
a confidence interval may be more useful here in suggesting 
how large the difference might be.

Example:
The only measured changes in the subject data 
during space flight (compared with before flight) 
were a slight (but statistically significant) increase 
in blood potassium as shown in Figure 5 [of the 
original article], and a slight (but statistically signifi-
cant) decrease in ionized calcium. Glucose results 
were relatively more variable (compared with other 
data); however, fasting was not a constraint of this 
experiment. After flight, there were statistically (but 
not clinically) significant decreases in blood potas-
sium, ionized calcium, and pH on R + 0 as shown 
in Figure 5 [of the original article] compared with 
preflight values.3

Note how the authors properly distinguish between statistical 
significance (differences too big to be due to ‘chance’, or sampling 
variability) and clinical significance (differences indicating an 
actual physiological change in the subject). Statistical significance 
reflects the likelihood the measure has changed while clinical 
significance reflects the magnitude of the measure’s change, or 
whether or not a given drug affects the patient.

Any decisions based upon p-values that are ‘borderline’ or 
confidence intervals that indicate a small difference should 
be carefully considered using the researcher’s best professional 
judgment. A p-value of .049 is really not that different from 
a p-value of .051. For such outcomes that are a little unclear, 
the researcher should take into account the cost of each choice 
and the consequences of making the wrong decision.

If a test has been performed in order to assess whether or 
not there is an association between two variables (the null 
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hypothesis is that there is no association) and the results are 
statistically significant, the researcher should be careful about 
the conclusions that are drawn. Here is a classic example: 
suppose that over a particular span of time in a particular 
city, the number of churches increases as liquor sales go up. 
Does this mean that the church members are buying alco-
hol? Of course not—the extraneous variable population size 
is causing both variables to increase. If an experiment has 
been performed, then one can make a case for causation. 
However, if the results come from an observational study, 
association does not necessarily imply causation, and other 
criteria need to be considered in order to establish a cause-
and-effect relationship.

SOME COMMONLY USED STATISTICAL PROCEDURES 
One-sample t-test
A one-sample t-test is used to compare a mean to a particular 
value. The null and alternative hypotheses are the following:

H0: μ = μ0 and

Ha: μ ≠ μ0  or Ha: μ > μ0  or Ha: μ < μ0.

The test statistic is

In “Segmented Neutrophil Size and Platelet Morphology in 
HIV/AIDS Patients” Bamberg and Johnson conclude that 
“Comparison of the sample mean of 15.1 to a reference mean 
for neutrophil diameter of 12.0 using a one-sample T-test 
demonstrated the HIV/AIDS patients’ neutrophil diameter 
to be statistically larger than a reference population (T-test 
= 16.15, p <0.0001).”4 The small p-value indicates a signifi-
cant difference but does not provide information about the 
magnitude of the difference. An accompanying confidence 
interval is often useful for such situations.

Paired t-test
A paired t-test can be used to make comparisons in data 
collected through matched pair designs, before-and-after 
observations made on the same subjects, etc. Here the mean 
difference is usually compared to zero. The null and alterna-
tive hypotheses are the following:

H0: μd = 0 and

Ha: μd ≠ 0  or Ha: μd > 0  or Ha: μd < 0.

The test statistic is

where and sd are the mean and standard deviation of the 
sample differences, di.

In “An Investigation of Apoptosis in Androgenetic Alopecia”, 
two scalp biopsies (frontal and occipital) were obtained from 
each of 16 men undergoing hair transplantation. Morgan and 
Rose conclude that “The paired t-test revealed a t statistic of 
3.01 (p <0.05) for TUNEL FSI vs OSI.”5 The paired t proce-
dure is appropriate because of the natural pairing created by 
taking two measurements on each subject. The small p-value 
indicates that the mean difference in the frontal and occipital 
measurements is significantly different from zero.

One-way analysis of variance
The one-way analysis of variance (ANOVA) procedure is used 
to compare several means. The hypotheses are the following:

H0: μ1 = μ2 = … = μg and

Ha: At least two means are unequal.

The test statistic is

where BSS is the between sum of squares, WSS is the within 
sum of squares, g is the number of groups, and N is the total 
sample size.

In “Comparison of Four Automated Hematology Analyzers”, 
Koenn and others use one-way ANOVA several times to 
compare four automated hematology analyzers with respect 
to efficiency and sensitivity.6 According to the authors, “Two 
of the DLC parameters displayed statistically significant dif-
ference (p ≤0.05) from the manual differential.” The authors 
go on to note that “Though statistically significant, the per-
cent basophil variation would not be considered clinically 
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Figure 1. Comparison of Beckman Coulter Access 1 PSA and ERA PSA 
by linear regression analysis

significant by most hematologists.” 
In this example, the small p-value 
indicates statistical significance, but 
the authors’ clinical expertise indicates 
that differences are not meaningful in 
a practical way.

Linear regression
When analysis includes examination of 
two quantitative variables for associa-
tion, linear regression is the appropri-
ate statistical method to use. The linear 
regression model is of the form

where a is the y-intercept and b is the 
slope. A statistical software package can 
easily produce the slope and intercept 
values as well as the correlation coef-
ficient r.

Koenn and Ndah, in a method com-
parison study, used linear regression to 
quantify the comparability of results 
from a semi-automated PSA immuno-
assay and a manual uE3 immunoassay 
to an automated analyzer.7 Their results 
are excerpted here:

“PSA linear regression analysis for 
the two methods (ERA and Access 1) 
were

y = 1.0008x + 0.0393, r = 0.9976, SE 
= 0.1319, n = 37 …”

Examination of their accompanying 
graph will help us understand how these 
results led them to their conclusion 
that the automated analyzer method’s 
output was acceptable (Figure1).

Examining their results, we see “y = 
1.0008x + 0.0393”—this means, based 
on their experiment, the line that best 
describes the association between ERA 
PSA (regarded as “truth” about the 
immunoassay) and Access 1 PSA is 
the following:

Access IPSA = 1.0008 x ERA PSA + 0.393

Then to predict what value an analyst 
would get from the Access 1 method, 
we may take the value from the ERA 
method times 1.0008 and add 0.393.

Next, we see “r = 0.9976”—note that 
this value is positive, reflecting the fact 
that (as was expected) as ERA PSA in-

RESEARCH AND REPORTS

creases, so does Access 1 PSA: a positive 
relationship. Also note that it is very 
near 1.0—if it had been 1, this would 
have indicated a deterministic relation-
ship between the two PSA methods: 
no error in predicting one, using the 
other in a linear function. Often we 
see, rather than (or in addition to) r, 
its square, called r2 = the coefficient of 
determination. This is interpreted as 
the proportion of the variability of the 
y variable that is accounted for in the 
linear association with the x variable. 
In this case, r2 = 0.99762 = 0.9952, or 
99.5%, a very high proportion of the 
variability. This reflects the fact that in 
the graph above, the points all fall very 
near the predicted line.

Finally, the statement “SE = 0.1319” 
describes the variability of the observed 
y (Access 1 PSA) values above and below 
the best-fit line: assumptions typically 
made when doing linear regression 
include that this variability (stated as 
a standard error) is uniform regardless 
of the x value (called homoscedasticity). 
In the picture, both the smallness and 
the uniformity of the variability in the 
y-values can be seen.

In a second example from their method 
comparison article, Koenn and Ndah 
compare manual uE3 and automated 
Access 1 methods:

“uE3 linear regression analysis for the 
two methods (RIA and Access 1) were

y = 1.4105x – 0.3741, r = 0.8696, SE 
= 0.8330, n = 33 …”

As we did in the first example, 
we include their graph to help us 
understand what these results mean. 
See Figure 2.

Their first result, “y = 1.4105x 
– 0.3741,” indicates that to predict 
the Access 1 result from the RIA, we 
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Figure 2. Comparison of RIA uE3 and Beckman Coulter Access 1 uE3by 
linear regression analysis

would multiply the RIA by 1.4105 
and subtract 0.3741. If we regard RIA 
as ‘truth’, we may be concerned that 
we have to multiply by a number so 
different from 1 (y = 1x + 0 indicating 
the two measures are identical).

Next, we see “r = 0.8696”—a value 
that again is positive, however not as 
near 1 as in our first example. This is 
indicated in the graph by the higher 
variability of the y-values around the 
best-fit line. Consideration of r2 = 
0.86962 = 0.7562 reveals that far less of 
the variability of the Access 1 results are 
accounted for by the difference among 
the RIA values.

Finally, the “SE = .8330” reiterates 
the lower predictive value of the linear 
relationship in using RIA to predict 
Access 1 results: the bigger standard 
error impedes us in our goal of using 
Access 1 results in the stead of RIA.

Odds ratio
In their article analyzing incidence of 
thromboembolic events, Guirguis and 
others search for a relationship between 
these events and a significantly short 

aPTT (activated partial thromboplastin 
time).8 Their analysis included the fol-
lowing: “Multivariate analysis revealed 
that patients with short aPTT have an 
odds ratio (OR) = 2.15, 95% confidence 
interval (CI) (1.27–3.64) (p = 0.0042), 
…” First, the odds ratio itself: note 
that the association being considered is 
that between two qualitative variables, 
namely whether a thromboembolic 
event occurred and whether the subject 
had a significantly short aPTT. If we are 
comparing the incidence of a particular 
characteristic in two groups of subjects, 
call p1 the proportion of group one with 
that characteristic and p2 the correspond-
ing proportion in group two. Then

Note that the numerator is the odds for a 
subject from group one having the char-
acteristic of interest and the denomina-
tor, the same for group two. A property 
of the odds ratio, therefore, is that if this 
characteristic is equally prevalent in the 
two groups, the odds ratio will be 1. A 
greater prevalence in group one would 
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lead to an odds ratio greater than 1. 
For our example study, the researchers 
found an odds ratio of 2.15, looking 
at incidence of thromboembolic events 
among those subjects with short aPTT 
compared to those without. They further 
quantify their stated association by point-
ing out that a 95% confidence interval 
for this OR is from 1.27 to 3.64—note 
that this interval does not include 1. 
They conclude their examination of 
this relationship by quoting a p-value 
of 0.0042, indicating that the sample 
result of 2.15, or greater, would happen 
in only 0.42% of experiments if the OR 
among all patients were actually 1. They 
conclude, statistically, that this is too rare 
to be due to chance, and decide that a 
short aPTT is a significant indicator of 
potential thromboembolic events.

Chi-square
If we are interested in examining the 
relationship between two categorical 
variables, a chi-square test is one pos-
sible approach. The hypotheses are the 
following:

 H0: The two classifications are in-
dependent.

 Ha: The two classifications are de-
pendent.

 χ2 =  

where 

Note that this test should be used only 
when the expected cell counts are all at least 
five. When this is not the case, Fisher’s exact 
test is a possible method of analysis.

Guiles and Tatum were considering the 
relationship among several qualitative 
variables in their 2002 study. They 
were curious about whether knowledge 
of certain skills, use of certain skills, 
and whether subjects were a clinical 
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laboratory science (CLS) or medical technology (MT) major 
in college were associated.9 They reported results of 39 chi-
square tests of association: like the odds ratio, the relationship 
among quantitative variables can be tested; but variables 
may have more than two levels. A chi-square test exhibiting 
significance indicates that the proportion of subjects at the 
various levels of one variable depends on (is affected by) 
the value of the other variable. For instance, in comparing 
problem-solving skills, 28 of the 34 laboratory professionals 
who were CLS/MT majors reported learning this skill com-
pared to 7 of the 13 non-CLS/MT majors. These responses 
yield a chi-square test statistic of χ2 = 4.019 with a p-value = 
0.045 (this, however, does not agree with their reported value 
of χ2 = 8.672; further, their reported p-value is not correct for 
this value of χ2). As this value is less than 0.05, they declare 
that problem-solving skills are indicated by different propor-
tions of CLS/MT and non-CLS/MT majors.

CONCLUSION
The technology of today provides us with the ability to 
quickly summarize and analyze data, but researchers and 
clinical practitioners are still responsible for interpreting 
computer output accurately. Thoughtful consideration of 

the results of confidence intervals and hypothesis tests can 
aid professionals in avoiding common pitfalls.
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